
Noname manuscript No.
(will be inserted by the editor)

The Impact of Feature Reduction Techniques on Defect
Prediction Models

Masanari Kondo · Cor-Paul Bezemer ·
Yasutaka Kamei · Ahmed E. Hassan · Osamu
Mizuno

the date of receipt and acceptance should be inserted later

Abstract Defect prediction is an important task for preserving software quality. Most
prior work on defect prediction uses software features, such as the number of lines
of code, to predict whether a file or commit will be defective in the future. There are
several reasons to keep the number of features that are used in a defect prediction
model small. For example, using a small number of features avoids the problem of
multicollinearity and the so-called ‘curse of dimensionality’. Feature selection and
reduction techniques can help to reduce the number of features in a model. Feature
selection techniques reduce the number of features in a model by selecting the most
important ones, while feature reduction techniques reduce the number of features
by creating new, combined features from the original features. Several recent stud-
ies have investigated the impact of feature selection techniques on defect prediction.
However, there do not exist large-scale studies in which the impact of multiple feature
reduction techniques on defect prediction is investigated.

Masanari Kondo, Osamu Mizuno
Software Engineering Laboratory (SEL)
Kyoto Institute of Technology, Japan
E-mail: m-kondo@se.is.kit.ac.jp, o-mizuno@kit.ac.jp

Cor-Paul Bezemer
Department of Electrical and Computer Engineering
University of Alberta, Canada
E-mail: bezemer@ualberta.ca

Yasutaka Kamei
Principles of Software Languages group (POSL)
Kyushu University, Japan
E-mail: kamei@ait.kyushu-u.ac.jp

Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL), School of Computing
Queen’s University
Kingston, Ontario, Canada
E-mail: ahmed@cs.queensu.ca

2 Kondo et al.

In this paper, we study the impact of eight feature reduction techniques on the
performance and the variance in performance of five supervised learning and five
unsupervised defect prediction models. In addition, we compare the impact of the
studied feature reduction techniques with the impact of the two best-performing fea-
ture selection techniques (according to prior work).

The following findings are the highlights of our study: (1) The studied correla-
tion and consistency-based feature selection techniques result in the best-performing
supervised defect prediction models, while feature reduction techniques using neural
network-based techniques (restricted Boltzmann machine and autoencoder) result in
the best-performing unsupervised defect prediction models. In both cases, the defect
prediction models that use the selected/generated features perform better than those
that use the original features (in terms of AUC and performance variance). (2) Neural
network-based feature reduction techniques generate features that have a small vari-
ance across both supervised and unsupervised defect prediction models. Hence, we
recommend that practitioners who do not wish to choose a best-performing defect
prediction model for their data use a neural network-based feature reduction tech-
nique.

1 Introduction

Software developers have limited time to test their software. Hence, developers need
to be selective when deciding where to focus their testing effort. Defect prediction
models help developers focus their limited testing effort on components that are the
most likely to be defective. Because detecting defects at an early stage can con-
siderably reduce the development cost [74], defect prediction models have received
widespread attention in software engineering research.

Many software features (e.g., software complexity features) can be used in de-
fect prediction models [4, 11, 27, 36, 47]. However, it is important to carefully select
the set of features that is used in such models, as using a set of features that is too
large does not automatically result in better defect prediction. For example, prior
studies showed that reducing the number of features avoids the problem of multi-
collinearity [15] and the curse of dimensionality [5]. Hence, many of the existing de-
fect prediction models used feature selection or reduction techniques [8, 11, 16, 18–
20, 23, 29, 33, 34, 48, 52–54, 61–64, 69, 76, 81].

Feature selection techniques reduce the number of features in a model by select-
ing the most important ones, while feature reduction techniques reduce the number
of features by creating new, combined features from the original features. Recent
studies [18, 76] investigated the impact of feature selection techniques on the perfor-
mance of defect prediction models. However, this paper describes the first large-scale
study on multiple feature reduction techniques and their impact on a large number of
prediction models.

In this paper, we compared the impact of the original features, features that are
generated using traditional feature reduction techniques (i.e., PCA [11], FastMap [14],
feature agglomeration [65], random projections [6], TCA [57] and TCA+ [54]), and
features that are generated using neural network-based feature reduction techniques

2

The Impact of Feature Reduction Techniques on Defect Prediction Models 3

(i.e., restricted Boltzmann machine (RBM) [70] and autoencoder (AE) [30]) on defect
prediction models. In addition, we compared the impact of features that are gener-
ated using feature reduction techniques with features that are selected using the best-
performing feature selection techniques in prior work (correlation and consistency-
based feature selection) [18, 76]. We compared the features along two dimensions:
their performance (area under the receiver operating characteristic curve (AUC)), and
their performance variance (interquartile range (IQR)). The receiver operating char-
acteristic curve is created by plotting the true positive rate against the false positive
rate, hence, the AUC represents the balance between the true positive rate and the
false positive rate. The IQR represents the variance of a data distribution.

We conducted experiments on three publicly available datasets that contain soft-
ware defects (the PROMISE [33], cleaned NASA [66], and AEEEM [11] datasets).
Our ultimate goal is to identify which feature reduction techniques yield new, pow-
erful features that preserve the predictive power of the original features, and improve
the prediction performance compared to feature selection techniques. We studied the
impact of feature reduction techniques on five supervised learning and five unsuper-
vised learning models for defect prediction in our experiments. In particular, we focus
on the following research questions:

RQ1: What is the impact of feature reduction techniques on the performance of
defect prediction models?
Motivation: Reducing the number of features in a model can address the mul-
ticollinearity problem [15] and the curse of dimensionality [5]. In this RQ, we
studied how feature reduction techniques impact the performance of supervised
and unsupervised defect prediction models.
Results: Feature agglomeration and TCA can reduce the number of features,
while preserving an AUC that is as good as that of the original features for su-
pervised models. In addition, the AUC of unsupervised defect prediction mod-
els is significantly better when preprocessing the features with neural network-
based feature reduction techniques than other feature reduction techniques.

RQ2: What is the impact of feature reduction techniques on the variance of the
performance across defect prediction models?
Motivation: The AUC for a dataset can vary across defect prediction models.
Hence, it can be challenging for practitioners to choose the defect prediction
model that performs best on their data. If all defect prediction models have
a small performance variance for a dataset, practitioners can avoid having to
make this challenging choice.
Results: Neural network-based feature reduction techniques (RBM and AE)
generate features that improve the variance of the performance across different
defect prediction models in many cases when used in a supervised or unsuper-
vised defect prediction model. In addition, almost all feature reduction tech-
niques (except PCA) generate features that improve the variance of the perfor-
mance across different defect prediction models in many cases when used in an
unsupervised defect prediction model.

RQ3: How do feature selection techniques compare to feature reduction tech-
niques when applied to defect prediction?

3

4 Kondo et al.

Motivation: Prior work [18, 76] showed that several feature selection tech-
niques outperform the original models. In this RQ, we studied how feature se-
lection techniques compare to feature reduction techniques.
Results: For the supervised defect prediction models, the studied feature se-
lection techniques (correlation and consistency-based feature selection) out-
perform all the studied feature reduction techniques. However, for the unsu-
pervised defect prediction models, the neural network-based feature reduction
techniques (RBM and AE) outperform the other studied feature selection/re-
duction techniques.

Our results provide practitioners with advice on which feature selection/reduc-
tion technique to use in combination with a defect prediction model. In particular, we
recommend to use a feature selection technique when using a supervised defect pre-
diction model, and a neural network-based feature reduction technique when using an
unsupervised defect prediction model, as these feature selection/reduction techniques
improve the variance across defect prediction models, while outperforming the other
feature reduction techniques.

The organization of our paper is as follows. Section 2 introduces related work.
Section 3 presents our methodology. Section 4 presents experimental setup. Section 5
presents the results of our experiment. Section 6 discusses these results. Section 7
describes the threats to the validity of our findings. Section 8 presents the conclusion.

2 Related work

In this section, we discuss related work on defect prediction, and feature selection
and reduction.

2.1 Defect prediction

Defect prediction approaches can be divided in two categories: approaches that use
supervised learning and unsupervised learning. Supervised defect prediction models
need training data and test data. Usually, the training data and test data are collected
from the same, or very similar projects from the same organization (within-project
defect prediction). However, sometimes it is difficult to collect sufficient training data
from the same project or organization (e.g., when the project is new).

In such cases, cross-project defect prediction can be a viable alternative solution.
Cross-project defect prediction uses training datasets that contain data that comes
from multiple projects, or even from multiple organizations. Cross-project defect
prediction offers a solution for the problem of within-project defect prediction since
small datasets can be extended with data from other projects. Hence, cross-project de-
fect prediction is one of the important research themes in defect prediction research.
However, cross-project defect prediction has several challenges [3, 28, 29, 50, 53].
For instance, cross-project defect prediction has the problem of heterogeneous orig-
inal features across datasets [53]. There exists one solution for this challenge [51],
however; converging datasets collected from multiple companies to one dataset when

4

The Impact of Feature Reduction Techniques on Defect Prediction Models 5

Table 1 Overview of prior work that uses feature selection or reduction techniques in combination with
defect prediction.

Technique Family Example of References
Techniques

Feature Selection Filter-based Feature Chi-Square [16, 18–20, 33, 45, 48, 61, 69, 76]
Ranking Correlation
Filter-based Subset Correlation-based Feature [8, 16, 18, 48, 61, 76]
Selection Subset Selection
Wrapper-based Subset Logistic [18, 61, 63, 64, 69, 76]
Selection Regression
Greedy-based Feature Greedy Forward [48]
Selection Selection Algorithm
Distance-based Feature EM Algorithm [29]
Selection
State-of-the-Art MVS [52]
Others Significance [34, 53, 69, 81]

Feature Reduction PCA PCA [8, 11, 18, 49, 50, 56, 61, 62, 76]
State-of-the-Art TCA [54, 62]

they contain different features still remains an open challenge and further investiga-
tion is needed.

One way to overcome the challenge of heterogeneity is to use unsupervised defect
prediction models [2, 7, 52, 77, 78, 80]. Unsupervised models have the advantage that
they do not need a training dataset, and therefore, are not affected by the problem of
heterogeneous features [2, 7, 52, 77, 78, 80]. Recently, Zhang et al. [78] summarized
the accuracy of several supervised and unsupervised models for defect prediction.
They concluded that connectivity-based unsupervised models have an accuracy that
is as good as that of supervised models. Therefore, unsupervised models are a viable
alternative to supervised models for defect prediction. Note that unsupervised models
do not need training data, and are therefore always within-project defect prediction
models.

2.2 Feature selection and reduction

Using feature selection or reduction technique has the advantage of addressing the
curse of dimensionality [5]. This problem is originally considered a dynamic op-
timization problem. However, machine learning models also need to consider this
problem. The problem occurs when having a large number of features yet a small
sample size in machine learning models. In this case, the sample size is not large
enough to search the representations of all the combinations of features, and to gen-
eralize their parameters (resulting in overfitting) [31]. Hence, the prediction per-
formance of these models for unseen data would be worse, and could lead to a
classification error. Feature selection or reduction techniques can address this prob-
lem by removing or combining redundant and irrelevant features. In addition, prior
work [45, 46] reported that the prediction performance of a model is often determined
by only a few features. Therefore, feature selection or reduction techniques can often
be applied without negatively affecting the prediction performance.

In this paper, we define feature selection and reduction as follows:

5

6 Kondo et al.

– Feature selection techniques reduce the number of features by selecting a subset
of the original features.

– Feature reduction techniques reduce the number of features by combining original
features into new features.

Several researchers studied the impact of feature selection techniques on defect
prediction models [8, 16, 18–20, 29, 33, 34, 45, 48, 52, 53, 61, 63, 64, 69, 76, 81] .
Table 1 gives an overview of prior work that uses feature selection or reduction tech-
niques. For instance, Ghotra et al. [18] summarized the impact of feature selection
techniques for defect prediction. They reported that correlation-based feature selec-
tion outperforms the other feature selection techniques. In addition, they showed that
the impact of feature selection techniques varies across the studied datasets. Xu et
al. [76] also summarized the impact of feature selection techniques on defect predic-
tion models. They also reported that the effectiveness of feature selection techniques
exhibits significant differences across studied datasets. Menzies et al. [45] used the
information gain measure to rank features based on their importance in a defect pre-
diction model. They found that defect prediction can often be done using only a small
set of features. For example, they reduced the number of features in the CM1 project
from 38 to 3 without affecting the prediction performance.

The impact of feature reduction techniques on defect prediction models has not
been studied as extensively. Most researchers use principal component analysis (PCA) [8,
11, 18, 49, 50, 56, 61, 62, 76], and only a few researchers use other feature reduc-
tion techniques [54, 62]. For instance, D’Ambros et al. [11] compared class-level
defect prediction models to present a benchmark for defect prediction. They used
PCA to avoid the problem of multicollinearity [15] among the independent variables.
Nagappan et al. [49] predicted post-release defects using complexity features. They
built prediction models using PCA to avoid the problem of multicollinearity. Neu-
mann [56] proposed PCA-ANN which is a combination of PCA and artificial neural
networks. Neumann also used PCA to avoid the problem of multicollinearity. Chal-
lagulla et al. [8] compared several prediction models for identifying defects. In ad-
dition, they compared PCA with feature selection techniques such as feature subset
selection. They concluded that feature selection techniques are better than PCA, and
that PCA did not add any advantages for defect prediction. Rathore et al. [61] com-
pared the performance of feature selection techniques. In this comparison, they also
used PCA. They found that PCA is one of the best-performing techniques in this
comparison. Ren et al. [62] extended PCA to address class imbalance problem for
defect prediction. Nam et al. [54] applied transfer component analyses (TCA and
TCA+) to training and test data to convert the data to be closer than the original data.
This process addressed the challenge of heterogeneity of training data and test data in
cross-project defect prediction. Nam’s approach significantly improved cross-project
defect prediction performance.

Despite the amount of prior work on feature reduction techniques (mostly on
PCA), no prior work has conducted a systematic study of the impact of feature re-
duction techniques on defect prediction models. In this paper, we provide such a
systematic study of the impact of eight feature reduction and two best-performing

6

The Impact of Feature Reduction Techniques on Defect Prediction Models 7

Table 2 Description of studied projects

Studied Dataset Project # of # of % Defective # of # of
Entities Defective Features∗ Studied Features∗

PROMISE Ant v1.7 745 166 22.3 24 20
Camel v1.6 965 188 19.5 24 20
Ivy v1.4 241 16 6.6 24 20
Jedit v4.0 306 75 24.5 24 20
Log4j v1.0 135 34 25.2 24 20
Lucene v2.4 340 203 59.7 24 20
POI v3.0 442 281 63.6 24 20
Tomcat v6.0 858 77 9.0 24 20
Xalan v2.6 885 411 46.4 24 20
Xerces v1.3 453 69 15.2 24 20

NASA CM1 327 42 12.8 38 37
JM1 7,782 1,672 21.5 22 21
KC3 194 36 18.6 40 39
MC1 1,988 46 2.3 39 38
MC2 125 44 35.2 40 39
MW1 253 27 10.7 38 37
PC1 705 61 8.7 38 37
PC2 745 16 2.1 37 36
PC3 1,077 134 12.4 38 37
PC4 1,287 177 13.8 38 37
PC5 1,711 471 27.5 39 38

AEEEM Eclipse JDT Core 997 206 20.7 291 212
Equinox 324 129 39.8 291 212
Apache Lucene 691 64 9.3 291 212
Mylyn 1,862 245 13.2 291 212
Eclipse PDE UI 1,497 209 14.0 291 212

∗ We removed features that are not related to source code. For instance, the name of the file, name of the class and
the version. Hence, the number of studied features are different from the total number of features.

feature selection techniques on five supervised and five unsupervised defect predic-
tion models.

Finally, Peters et al. [58] showed that often not only the features can be reduced
without negatively affecting the performance, but also the amount of the rows in the
data.

3 Methodology

In this section, we describe our methodology. In particular, we discuss our studied
datasets, defect prediction models, feature selection techniques, feature reduction
techniques, evaluation measure, our preprocessing steps, and our validation scheme.

3.1 Studied datasets

In our work, we used three publicly available datasets (the PROMISE [33], cleaned
NASA [55] and AEEEM [11] datasets) that were used by prior work [78] on su-
pervised and unsupervised defect prediction models. Table 2 describes the studied
datasets. All datasets contain popular software features for measuring source code
complexity (see Table 3 for a summary of the used features). Each entity in a dataset
is labelled as defective or clean.

7

8 Kondo et al.

Table 3 Studied features

Studied Dataset Features Reference

PROMISE CK Chidamber et al. [9]
OO Basili et al. [4]

NASA McCabe McCabe [43]
Halstead Halstead [24]

AEEEM CK Chidamber et al. [9]
OO Basili et al. [4]
number of previous defects Kim et al. [36]
change features Moser et al. [47]
complexity code change features Hassan [27]
churn of CK and OO D’Ambros et al. [11]
entropy of CK and OO D’Ambros et al. [11]

The PROMISE dataset contains several types of projects. We chose the 10 projects
that were used by prior work [78], to ease the comparison of our results with prior
work. All studied PROMISE projects have the same number of features. The PROMISE
dataset contains the Chidamber and Kemerer (CK) features [9] and an additional set
of object-oriented (OO) features [4].

The NASA dataset [55] contains 11 projects. Each project in the NASA dataset
has a different number of features. The NASA dataset contains McCabe features [43]
and Halstead features [24]. We used the cleaned version [66] of the NASA dataset,
because prior studies [59, 66] showed that the original version of the NASA dataset
contains inconsistent and mislabeled data.

The AEEEM dataset [11] contains five projects. All projects have the same num-
ber of features. Like the PROMISE dataset, the AEEEM dataset contains the CK and
OO features. However, the AEEEM data also contains the number of previous de-
fects [36], change features [47], complexity code change features [27], and the churn
and entropy of the CK and OO [11] features.

3.2 Studied defect prediction models

We focused on defect prediction models that were used by prior work [78], to make
our results easier to compare. We studied five supervised models and five unsuper-
vised models. Below we give a brief overview of the ideas behinds these models. For
a detailed overview, we refer the reader to the original papers in which these models
were introduced. We studied the following supervised defect prediction models:

– Logistic Regression (LR) [44]: LR is one of the most commonly used models for
defect prediction. LR expresses the relationship between one or more independent
variables (i.e., the original features) and one dependent variable (i.e., defective or
clean) using a polynomial expression and a sigmoid function [25].

– Decision Tree (J48) [60]: J48 is a decision tree implementation in WEKA [21].
The decision tree uses a tree structure to decide on the dependent variable. In this
tree, each node corresponds to one of the independent variables with a condition.

8

The Impact of Feature Reduction Techniques on Defect Prediction Models 9

J48 traverses the tree from the root to a leaf, while taking into account the in-
put entity and the conditions in the tree. Each leaf corresponds to a value of the
dependent variable.

– Random Forest (RF) [32]: RF is a popular ensemble learning model. RF builds
multiple decision trees based on subsets of training data that are randomly se-
lected. RF decides on a value of the dependent variable by taking the result of a
majority of the decision trees.

– Naive Bayes (NB) [79]: NB is a probability-based classifier that follows Bayes’
theorem. Bayes’ theorem describes the probability of an event, given knowledge
of conditions that could be related to the event.

– Logistic Model Tree (LMT) [39]: LMT is a classifier which combines a decision
tree and a logistic regression model. Like the decision tree, LMT follows a tree
structure. However, LMT uses logistic regressions instead of values in the leaves.

We used the caret library in R [38] to optimize the parameters of the supervised
models as suggested by Tantithamthavorn et al. [72].

We studied the following unsupervised defect prediction models:

– Spectral Clustering (SC) [75]: SC labels entities using a graph that is based on
similarities across entities. In this graph, each node is an entity and each edge rep-
resents the similarity of the entities it connects. SC cuts sparse edges in this graph
by classifying eigenvectors of the Laplacian matrix [75] of the graph. Following
this process, SC divides the entities into two groups.

– k-means (KM) [26]: KM is a popular clustering approach. KM classifies entities
based on the distances between entities and the center of a class (i.e., the mean
of all entities in that class). In this paper, we used the Euclidean distance as the
distance metric.

– Partition Around Medoids (PAM) [35]: PAM is an approach that is similar to
KM. While KM uses the center of a class, PAM uses medoids. A medoid is an
entity of which the sum of all the distances to the other entities in a class is at
its minimum. Because PAM uses the medoid instead of the center, PAM is less
likely to be affected by outliers than KM.

– Fuzzy C-Means (FCM) [13]: FCM is also an approach that is similar to KM.
While KM classifies each entity to only one class in its process, FCM allows
entities to be a member of more than one class. The membership is expressed as
a probability.

– Neural Gas (NG) [42]: NG is an approach that is similar to a self-organizing
map [37]. NG generates weighted points which have random features. Hence,
the weighted points are distributed across the feature space. For each learning
iteration, the features of the weighted points are updated by distances to closer
entities. Finally, the weighted points become the class centers.

We used the default parameters of the implementations for the unsupervised models.
We set the number of clusters to two, as defect prediction is a binary problem. Ta-
ble 4 shows the libraries that we used for the implementation of the defect prediction
models.

Labeling technique in the unsupervised models: The unsupervised models
classify the data in two unlabeled clusters. We adopted the following heuristic to

9

10 Kondo et al.

Table 4 Packages used for experiments

Defect Prediction Models Packages

LR The caret package in R
RF The caret package in R
NB The caret package in R
J48 The caret package in R
LMT The caret package in R
SC Zhang et al.’s implementation [78] (see app. A)
KM The cclust package in R
PAM The cluster package in R
FCM The e1071 package in R
NG The cclust package in R

TCA/TCA+

Original
Feature

New
Feature

Training
data

Test
data

Training
data

Test
data

RP

PCA

Original feature 1

Original feature N

New feature 1

FM

Entities

FA

Entities

0
BBB@

a11 a12 . . . a1M

a21 a22 . . . a2M

...
...

. . .
...

aN1 aN2 . . . aNM

1
CCCA

An original
entity , which
has featuresN

⇥

= (O1 · a11 + O2 · a21 + ... + ON · aN1, ..., O1 · a1M + O2 · a2M + ... + ON · aNM) = X

random-weight vectors matrix .N ⇥ M
Each column is a random-weight vector.

(O1, O2, ..., ON)

RN⇥M

O

Fig. 1 A visual overview of the core concepts of the traditional feature reduction techniques. The black
symbols represent the original features (or entities in FM and FA) and the purple symbols represent the
newly-generated features (or entities in FM and FA). RP (Random projection) transforms an original entity
to a new entity using M random-weight vectors.

identify the defective cluster: “For most features, software entities containing defects
generally have larger values than software entities without defects” [78]. In partic-
ular, we used the sum of row average of the normalized features in each cluster, to
decide which cluster contains the defects [78]. To calculate the sum of row average,
we first summed the entity values in each cluster, respectively. Then, we calculated
the average values for each cluster. The cluster with the larger average value was
identified as the cluster with the defective entities.

3.3 Studied feature reduction techniques

In this subsection, we discuss the studied feature reduction techniques. We studied
two types of feature reduction techniques: traditional and neural network-based fea-
ture reduction techniques. We give a brief overview of the core concepts of each

10

The Impact of Feature Reduction Techniques on Defect Prediction Models 11

0-1 Scale Original Features

Feature1 Feature M...

...

...

V1 V2 VN

H1 H2 HM

Fig. 2 An overview of neural network-based feature reduction techniques (RBM and AE). RBM and AE
convert the original features (Vi), which values must range between 0 and 1, into M new features (Hi).
Note that the original input data may need to be preprocessed to satisfy the 0-1 range requirement.

feature reduction technique. For more precise details, we refer to the references that
are mentioned for each technique. Figure 1 shows a visualization of the traditional
feature reduction techniques (PCA, FM, FA, TCA/TCA+, RP). Figure 2 gives an
overview of neural network-based feature reduction techniques (RBM and AE).

3.3.1 Traditional feature reduction techniques

We studied the following traditional feature reduction techniques.

– Principal Component Analysis (PCA): PCA is one of the most commonly used
feature reduction techniques in defect prediction [8, 11, 18, 23, 50, 61, 62, 76].
PCA reduces the number of features by projecting the original set of features on
a smaller number of principal components.

– FastMap (FM):For N original features, FM [14] first generates a (N-1)-dimensional
orthogonal hyper-plane of the line between two entities that are far from each
other. Second, FM projects the other entities on this hyper-plane. Because FM
projects the entities on the N − 1 orthogonal hyper-plane, we can reduce one fea-
ture from the original features. FM repeats this procedure until we get the required
number of new features. For instance, if we want three features to visualize our
data from the N original features, we repeat the procedure N-3 times.

– Feature Agglomeration (FA): FA is a simple hierarchical clustering algorithm [65].
FA starts by creating a new feature from each original feature. Then, FA merges
the two nearest (based on their Euclidean distance) features into one feature, and
repeats this process until the desired number of features is reached.

– Transfer Component Analysis (TCA and TCA+): TCA [57] creates new features
from the original features by projecting them on so-called transfer components
(similar to PCA). However, the goal of TCA is not to reduce the number of fea-
tures, but to reduce the gap between the distribution of the training and testing
data. During this process, the number of features is often reduced. Hence, TCA

11

12 Kondo et al.

can be used as a feature reduction technique. TCA+ [54] is an extension of TCA,
which optimizes the data using a preprocessing step according to the gap between
the distribution of the training and testing data, such as scaling the original fea-
tures between 0 and 1 instead of using the z-score.

– Random Projection (RP):RP projects the original N-dimensional features onto M
generated features (M � N) using a N × M random-weight vectors matrix [6].
The equation of RP is as follows:

X = O × RN×M

where X is a generated M-dimensional vector entity, O = (O1,O2, ...,ON) is an
original entity, and RN×M is a random-weight vectors matrix. For example, if we
want three features from N original features, we prepare three random-weight
vectors with N random values in each of them. The random values are selected
such that X represents the original features.

3.3.2 Neural network-based feature reduction techniques

We studied the following neural network-based feature reduction techniques.

– Restricted Boltzmann Machine (RBM): An RBM [70] automatically extracts im-
portant information from the original features as weights and biases on a two-
layered neural network. Each node in the first-layer corresponds to an original
feature, and each node in the second-layer corresponds to a new feature. We use
the output of the second-layer as the new features.

– Autoencoder (AE): AE [30] and RBM are similar, but trained differently. In RBM,
the network is trained based on a probability distribution. In AE, the network is
trained using the difference between the original and the generated features.

3.4 Studied feature selection techniques

We studied the correlation-based (CFS) and consistency-based feature selection tech-
niques (ConFS). These techniques were reported as the best-performing feature se-
lection techniques in prior studies [18, 76]. Below, we give a brief overview of these
techniques.

– Correlation-based feature selection (CFS) [22]: CFS selects a subset of features
based on their correlation. The selected features have strong correlations with the
class label (clean or defective), while having a low correlation with each other.

– Consistency-based feature selection (ConFS) [12]: ConFS uses the consistency
of the class label across the entities instead of the correlation. For example, if file
A has a feature set (10, 20, 40, defective) and file B has a feature set (10, 20,
30, clean), we can identify the defective and clean entities using the third feature.
However, if a feature reduction technique removes the third feature, file A and file
B have the same feature set except for the class label. In that case, these entities
are inconsistent. Using this information, ConFS selects the best feature subset
from the original features.

12

The Impact of Feature Reduction Techniques on Defect Prediction Models 13

3.5 Area under the receiver operating characteristic curve (AUC)

We used the Area Under the receiver operating characteristic Curve (AUC) as the per-
formance measure since AUC is not affected by the skewness of defect data [71, 78].
The receiver operating characteristic (ROC) curve is created by plotting the false pos-
itive rate (on the x-axis) and the true positive rate (on the y-axis) at various thresholds.
In our experiment, the false positive rate is defined as the portion of clean entities that
are identified as defective; the true positive is defined as the portion of defective en-
tities that are identified as defective. The threshold is used to label an entity as clean
or defective by checking whether its predicted probability is over the threshold. The
AUC is the area under the ROC curve. The values of the AUC range between 0 and
1; a perfect classifier has an AUC of 1, while a random classifier has an AUC of 0.5.

3.6 Preprocessing

Most feature reduction techniques require the data to be preprocessed. We detail the
preprocessing step below.

3.6.1 Preprocessing for traditional feature reduction techniques

The traditional feature reduction techniques require features that are normalized to
a mean of 0 and a variance of 1 using the z-score [78]. The z-score is calculated as
follows:

Xz =
Xorg − µ

σ
(1)

where µ is a mean of the value of the feature for all entities and σ is the standard
deviation of the value of the feature for all entities.

3.6.2 Preprocessing for neural network-based feature reduction techniques

The neural network-based feature reduction techniques require either binary features
or features that are between 0 and 1. Hence, we scale the original features as follows:

Xscaled =
Xorg − Xmin

Xmax − Xmin
(2)

where Xorg is a vector of the value of a particular feature for all entities. Xmin is
the smallest value of the feature and Xmax is the largest value of the feature for all
entities [1].

3.7 Out-of-sample bootstrap sampling

Bootstrap sampling is a validation technique that is used to estimate the performance
of a model for unseen data. The technique is based on random sampling with re-
placement. Out-of-sample bootstrap sampling is a bootstrap sampling technique that

13

14 Kondo et al.

estimates the future performance of a defect prediction model more accurately than a
cross-validation scheme [71, 73]. Hence, we used the out-of-sample bootstrap sam-
pling technique instead of a conventional validation technique such as 10-fold cross-
validation. The process of the out-of-sample bootstrap sampling is as follows:

1. Sample N data points following the distribution of the original dataset, with N
data points, while allowing for replacement.

2. Train a model using the sampled N data points, and test it using the data points
that were not sampled.

3. Repeat steps 1 and 2 M times.
4. Report the average/median performance as the performance estimate.

We used the out-of-sample bootstrap sampling under the condition where M = 100
and we report the median performance.

4 Experimental setup

In this section, we give an overview of the setup of our experiments. The results are
presented in Section 5. Figure 3 shows the steps of our experiments. We first con-
ducted the out-of-sample bootstrap sampling on our studied datasets to generate and
select features using each of the studied feature reduction and selection techniques.
We then preprocessed the original features of each bootstrap sample as described in
Section 3.6. We generated eight new feature sets (one for each feature reduction tech-
nique) for each bootstrap sample. Hence, we generated 800 new feature sets using
feature reduction in total. Furthermore, the two studied feature selection techniques
selected two feature subsets (one for each feature selection technique) for each boot-
strap sample. Hence, we selected 200 feature subsets using feature selection in total.

The smallest number of features in the studied datasets is 20 (i.e., in the PROMISE
dataset). Hence, to be able to observe the impact of a feature reduction technique,
we configured each feature reduction technique to generate 10 features (H1–H10).
However, PCA uses variance to decide on the number of generated features [11, 18].
Therefore, each bootstrap sample results in a different number of generated features
using PCA. We configured PCA to retain 95% of the variance in the data [11, 18].
The median number of generated features by PCA in our experiments was 12 in the
PROMISE dataset, 10 in the NASA dataset and 34 in the AEEEM dataset.

The experimental setup for each RQ is discussed in the next section.

5 Results

In this section, we present the results of our experiments. For each RQ, we discuss
the motivation, approach and results.

14

The Impact of Feature Reduction Techniques on Defect Prediction Models 15

Third Step

Clustering results
using t-SNE for
weights from
each feature

reduction tech.

Calculate correlation
between the

generated features
from each feature

reduction tech.

H1
H2

H10

H1
Cor 1,1
Cor 2,1

Cor 10,1

H2
Cor 1,2
Cor 2,2

Cor 10,2

H10
Cor 1,10
Cor 2,10

Cor 10,10

Cluster 1
Cluster 2

Cluster 10

...

Discussion: Which features are generated by the feature reduction tech.?

1 3

First Step

H1

H2

H10

H1
H2

H10

Ori 1
W 1,1
W 2,1

W 10,1

Ori 2
W 1,2
W 2,2

W 10,2

Ori M
W 1,M
W 2,M

W 10,M

Generated
Features
(reduction tech.)

1 All weights of the feature
reduction tech.3

O1

O2

On

Selected
Features
(selection tech.)

2

The out-of-sample bootstrap sampling.
We repeat the above procedure for each feature reduction tech.

Second Step

Tech1 Tech2 Tech3 Tech4Conduct the
Scott-Knott
ESD test

AUC (RQ1)

Project 1
Model 1 Model 2 Model 5

Project 2

Project N

AUC 1,1
AUC 2,1

AUC N,1

AUC 1,2
AUC 2,2

AUC N,2

AUC 1,5
AUC 2,5

AUC N,5 Calculate IQR

RQ2: What is the impact of feature reduction tech. on the variance of the performance
across defect prediction models?
RQ3: How do feature selection techniques compare to feature reduction techniques
when applied to defect prediction?

Project 1

Project 2

Project N

Value 1
Value 2

Value N

IQR

4

6

RQ1: What is the impact of feature reduction tech. on the performance of defect prediction models?
RQ3: How do feature selection techniques compare to feature reduction techniques
when applied to defect prediction?

Conduct the
Scott-Knott
ESD test

Prediction
Models Calculate AUC for

each model for
each project for

features from each
feature

reduction/selection tech.

Tech1 Tech2 Tech3 Tech4

Model 1 Model 2 Model 5
Project 1
Project 2

Project N

AUC 1,2
AUC 2,2

AUC N,2

AUC 1,1
AUC 2,1

AUC N,1

AUC 1,5
AUC 2,5

AUC N,5

4

Model 1 Model 2 Model 5
Project 1
Project 2

Project N

Rat. 1,2
Rat. 2,2

Rat. N,2

Rat. 1,1
Rat. 2,1

Rat. N,1

Rat. 1,5
Rat. 2,5

Rat. N,5

4
Calculate the ratio

from the AUCs Pro.1 Pro.2 Pro.9 Pro.10

PROMISE, NASA, AEEEM

Summarize as
boxplots for

each project.

Median
Project 1
Project 2

Project N

Med. 1,1
Med. 2,1

Med. N,1

Compute median
ratio values across

the models for
each project.

Summarize as
tables for

each project

Pro. 1 Pro. 2 Pro. N
Tech 1
Tech 2

Tech M

Med. 1,2
Med. 2,2

Med. M,2

Med. 1,1
Med. 2,1

Med. M,1

Med. 1,N
Med. 2,N

Med. M,N

PROMISE, NASA, AEEEM

5

5

6 Summarize as
tables for

each feature
reduction/selection

tech.

Supervised/Unsupervised
Tech. 1

Project 1
Project 2

Project N

IQR. 1,1
IQR. 2,1

IQR. N,1

Tech. 2
IQR. 1,2
IQR. 2,2

IQR. N,2

Tech. M
IQR. 1,M
IQR. 2,M

IQR. N,M

1
RQ1

1 2
RQ3

For all files in a
bootstrap sample

Feature
Reduction/Selection

Tech.

Original
Features

Fig. 3 Overview of our experimental design. We first generate/select 100 (the out-of-sample bootstrap)
feature sets using each feature reduction/selection technique for each studied dataset. The second step is
different for each RQ. We conduct correlation analysis and clustering analysis for discussion in the third
step.

15

16 Kondo et al.

5.1 RQ1: What is the impact of feature reduction techniques on the
performance of defect prediction models?

Motivation: Reducing the number of features that are used in a defect prediction
model can be beneficial for addressing the curse of dimensionality and multicollinear-
ity of the model. There exist two ways to reduce the number of features in a model:
(1) by selecting the most important features, and (2) by reducing the number of fea-
tures by creating new, combined features from the original features. Prior work has
systematically studied the impact of feature selection techniques on defect predic-
tion [18, 76], but no work has conducted a large-scale study of the impact of feature
reduction techniques on defect prediction. Hence, in this RQ, we studied the impact
of feature reduction techniques on the performance (AUC) of defect prediction mod-
els.

Approach: We used each feature set that was generated by a feature reduction
technique as input to the studied 5 supervised and 5 unsupervised defect prediction
models. We used the AUC as the performance measure. Because we calculated the
AUC of a defect prediction model using the out-of-sample bootstrap sampling 100
times for each feature reduction technique, each model has 100 AUC values. Hence,
we used the median value to represent the median performance of a defect prediction
model using a certain feature reduction technique. Because we studied 26 projects,
our experiments yielded 260 median AUC values for each feature reduction tech-
nique (5 supervised models*26 projects+5 unsupervised models*26 projects). For
comparison, we also calculated the performance of the studied defect prediction mod-
els without applying a feature reduction technique (indicated as ORG). Note that we
did within-project defect prediction in our experiments.

We used the Scott-Knott ESD test [73] (using a 95% significance level) to com-
pare the median AUC values across feature reduction techniques. The Scott-Knott test
is a hierarchical clustering algorithm that ranks the distributions of values. In particu-
lar, distributions that are not statistically significantly different are placed in the same
rank. The Scott-Knott ESD test is an extension of the Scott-Knott test, which not only
ranks based on significance, but also on Cohen’s d effect size [10]. The Scott-Knott
ESD test places distributions which are not significantly different, or have a negligi-
ble effect size, in the same rank. We used the ScottKnottESD R package1 that was
provided by Tantithamthavorn [72].

Project-level analysis: the aforementioned procedure combines the results of all
projects. However, this procedure prevents us from understanding differences for each
project. Hence, we also studied the performance at the project-level.

We compared the ratios of the AUCs (the median AUCs across all bootstrap sam-
ples) of each feature reduction technique to the original models. We calculated this
ratio as follows:

ratio =
AUCFR

AUCORG

Where AUCORG is the AUC of a prediction model using the original features, and
AUCFR is the AUC of a prediction model using the features that were generated by

1 https://github.com/klainfo/ScottKnottESD

16

https://github.com/klainfo/ScottKnottESD

The Impact of Feature Reduction Techniques on Defect Prediction Models 17

●●●●●●0.5

0.6

0.7

0.8

0.9

FA
ORG

TCA
TCA+ AE RP

RBM
PCA FM

A
U

C

(a) The supervised models

●●
●●

●●●

●

●
●

●

●

●
●

●

●
●

0.5

0.6

0.7

0.8

0.9

AE
RBM

PCA
ORG FA TCA RP FM

TCA+
A

U
C

(b) The unsupervised models

Fig. 4 The Scott-Knott ESD test results for the supervised (logistic regression, random forest, naive Bayes,
decision tree, and logistic model tree) and the unsupervised (spectral clustering, k-means, partition around
medoids, fuzzy C-means, neural-gas) models. Each color indicates a rank: models in different ranks have
a statistically significant difference in performance. Each boxplot has 130 median AUC values (5 defect
prediction models times 26 projects). The x-axis refers to the feature reduction techniques; the y-axis refers
to the AUC values.

a particular feature reduction technique. Hence, a ratio larger than 1 indicates that
the feature reduction technique improved the AUC compared to the original models,
while a ratio smaller than 1 indicates that the feature reduction technique reduced the
AUC. We computed the median ratio across the five studied supervised and unsuper-
vised prediction models.

We used the aforementioned ratio to analyze performance at the project-level. The
project-level analysis shows the impact of the different feature reduction techniques in
every single project and dataset. Figure 6 shows the distributions of the ratios for each
studied project for the supervised and unsupervised prediction models, respectively.
Each boxplot contains 40 ratio values (5 prediction models * 8 feature reduction
techniques). In addition, we show the median ratios for the best-performing feature
reduction techniques as tables for deeper analysis (Table 5). These median ratios were
computed from five AUC values (one for each studied prediction model).

Results: FA and TCA can preserve the performance of the original defect
prediction models, while at the same time reducing the number of features. Fig-
ure 4(a) and Figure 4(b) show that the performance of the supervised and unsuper-
vised defect prediction models does not decrease when applying FA or TCA. Hence,
these feature reduction techniques can safely be applied to reap the benefits of a re-
duced number of features. In particular, FA and TCA work well for supervised mod-
els. Interestingly, the performance of the supervised and unsupervised defect predic-
tion models is significantly lower when using TCA+ (which is an extension of TCA),
compared to the original TCA.

The neural network-based feature reduction techniques (RBM and AE), sig-
nificantly outperform traditional feature reduction techniques for the unsuper-

17

18 Kondo et al.

●●●●●●

●●
●●

●●●

●

●
●

●

●

●
●

●

●
●

0.5

0.6

0.7

0.8

0.9

SVL_
FA

SVL_
ORG

SVL_
TCA

SVL_
TCA+

SVL_
AE

SVL_
RP

SVL_
RBM

SVL_
PCA

USVL_
AE

USVL_
RBM

USVL_
PCA

USVL_
ORG

USVL_
FA

SVL_
FM

USVL_
TCA

USVL_
RP

USVL_
FM

USVL_
TCA+

A
U

C

Fig. 5 The Scott-Knott ESD test results for both the supervised and unsupervised models. Each color
indicates a rank: models in different ranks have a significant difference in performance. Each boxplot has
130 median AUC values (5 defect prediction models times 26 projects). The x-axis refers to the feature
reduction techniques; the y-axis refers to the AUC values. In the x-axis, the “SVL ”-prefix refers to the
5 supervised defect prediction models; the “USVL ”-prefix refers to the 5 unsupervised defect prediction
models.

vised defect prediction models. Figure 4(b) shows the AUC values and the results
of the Scott-Knott ESD test for the unsupervised models after applying the studied
feature reduction techniques.

The highest rank contains only the two studied neural network-based techniques:
RBM and AE. Hence, the neural network-based feature reduction techniques can
significantly improve the AUC compared to the original models and other feature
reduction techniques. However, these neural network-based feature reduction tech-
niques do not outperform ORG for the supervised models. In Section 6 we further
investigate why neural network-based feature reduction techniques work well for the
unsupervised, but not for the supervised defect prediction models.

The supervised models with feature reduction techniques significantly out-
perform the unsupervised models with feature reduction techniques. Figure 5
shows the AUC after applying the feature reduction techniques to the supervised and
unsupervised models. The supervised models significantly outperform the unsuper-
vised models. Prior research [78] reported that spectral clustering (SC) is the only
studied unsupervised defect prediction model that outperforms the supervised mod-
els.

The reason that the unsupervised models perform worse than the supervised mod-
els in Figure 5 is that we consider all the unsupervised models together, to be able to
provide a more generic conclusion. However, as Figure 5 shows, some unsupervised
defect prediction models perform better than others.

In the AEEEM dataset, the feature reduction techniques improve the pre-
diction performance of the supervised models for most projects. We observe that
the feature reduction techniques did not improve the prediction performance in many
projects, as the median values of several boxplots in Figure 6 are lower than 1.0. How-

18

The Impact of Feature Reduction Techniques on Defect Prediction Models 19

Ant
v1

.7

Cam
el

v1
.6

Ivy
 v1

.4

Jed
it v

4.0

Log
4j

v1
.0

Luc
en

e v
2.4

PO
I v

3.0

To
mcat

 v6
.0

Xala
n v

2.6

Xerc
es

v1
.3

0.6

0.8

1.0

1.2

1.4

PROMISE

CM1 JM1
KC

3
MC1

MC2
MW1

PC
1

PC
2

PC
3

PC
4

PC
5

NASA

Ecl
ips

e J
DT C

ore

Eq
uin

ox

Apa
che

 Lu
cen

e
Myly

n

Ecl
ips

e P
DE U

I

AEEEM

(a) The supervised models

Ant
v1

.7

Cam
el

v1
.6

Ivy
 v1

.4

Jed
it v

4.0

Log
4j

v1
.0

Luc
en

e v
2.4

PO
I v

3.0

To
mcat

 v6
.0

Xala
n v

2.6

Xerc
es

v1
.3

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3
PROMISE

CM1 JM1
KC

3
MC1

MC2
MW1

PC
1

PC
2

PC
3

PC
4

PC
5

NASA

Ecl
ips

e J
DT C

ore

Eq
uin

ox

Apa
che

 Lu
cen

e
Myly

n

Ecl
ips

e P
DE U

I

AEEEM

(b) The unsupervised models

Fig. 6 The ratios of the AUCs of the supervised and unsupervised prediction models. Each boxplot con-
tains 40 ratio values (5 prediction models * 8 feature reduction techniques). The x-axis indicates the studied
projects. The y-axis indicates the ratio. The dashed blue line indicates a ratio of 1.0. A ratio larger than 1.0
indicates that the feature reduction technique improved the AUC compared to the original models, while
a ratio smaller than 1.0 indicates that the feature reduction technique reduced the AUC. A ratio of 1.0 (on
the dashed blue line) indicates that the prediction model that uses features that were generated by a feature
reduction technique had the same performance as the original model.

ever, the studied feature reduction techniques improved the prediction performance
of the supervised models for many projects in the AEEEM dataset (Figure 6(a)). We
further investigate this phenomenon in Section 5.3.1.

The neural network-based techniques improve the prediction performance
of the supervised/unsupervised prediction models for most projects. Table 5 shows
the median ratios for the feature reduction techniques. We observe that the neural
network-based feature reduction techniques RBM and AE have the most gray cells
for the supervised/unsupervised prediction models in combination with the feature
reduction techniques.

However, almost all feature reduction techniques did not improve the prediction
performance in the NASA dataset except for FA with the unsupervised prediction
models. FA combined with the unsupervised prediction models improved over half
of the projects in the NASA dataset. We further investigate why the feature reduc-

19

20 Kondo et al.

●

●

●
●

0.0

0.1

0.2

0.3

AE
RBM FA TCA

ORG RP
TCA+

PCA FM

IQ
R

(a) The supervised models

●

●

●●

●

●●

●

●●●
●

●

0.0

0.1

0.2

0.3

TCA+
TCA AE

RBM FA RP FM
PCA

ORG

IQ
R

(b) The unsupervised models

Fig. 7 The Scott-Knott ESD test results for the IQR of the supervised and unsupervised models. Each color
indicates a rank: feature reduction techniques in different ranks have a significant difference in variance
(IQR). Each boxplot has 26 IQR values (one for each project). The x-axis refers to the feature reduction
techniques; the y-axis refers to the IQR values.

tion techniques work well for the AEEEM dataset but not for the other datasets in
Section 5.3.1.

5.2 RQ2: What is the impact of feature reduction techniques on the variance of
the performance across defect prediction models?

Motivation: A challenge in applying defect prediction for practitioners is to select
the best-performing model for their data from many possible defect prediction mod-
els [17, 19]. In this RQ, we studied the variance in performance across defect predic-
tion models of the studied feature reduction techniques for a particular dataset. If this
variance is small, the practitioner does not need to worry about the choice at all, as
the models perform similarly across datasets.

Approach: We used the interquartile range (IQR) which captures the performance
variance across the studied defect prediction models for a given project and feature
reduction technique. We used the AUC values of all the studied supervised and un-
supervised models for all bootstrap samples to conduct a new bootstrap sampling to
calculate the IQR for each reduction technique and each project. We calculated an
IQR value as follows:

1. Sample 100 AUC values at random from the 100 AUC values for each studied
supervised/unsupervised model allowing for replacement.

2. Compute the median AUC value across the sampled 100 AUC values.
3. Repeat steps 1 and 2 100 times.
4. Compute the IQR value for the 500 sampled median AUC values (5 supervised/un-

supervised prediction models * 100 median AUC values) for each feature reduc-
tion/selection technique for each studied project.

Where the IQR values are computed as follows:

IQR = Q3 − Q1

where Q1 is the first quartile of the 500 sampled median AUC values, and Q3 is the
third quartile of the 500 sampled median AUC values. The first quartile is the median

20

The Impact of Feature Reduction Techniques on Defect Prediction Models 21

Table 5 The median AUC ratios of the feature reduction techniques. The table also contains the median
ratios of the CFS and ConFS feature selection techniques, which are studied in RQ3. A ratio larger than
1 indicates that the feature reduction/selection technique improved the AUC compared to the original
models, while a ratio smaller than 1 indicates that the feature reduction/selection technique reduced the
AUC. The gray cells refer to the ratios that are greater than 1.0. The “Improved” row indicates the number
of projects for which a feature reduction/selection technique improved the performance.

(a) The supervised models

RBM AE PCA FM FA RP TCA TCA+ CFS ConFS

PR
O

M
IS

E

Ant v1.7 1.015 1.004 0.983 0.896 0.995 0.956 0.962 0.962 1.012 1.006
Camel v1.6 0.973 0.979 0.921 0.880 0.996 0.962 0.948 0.948 0.962 0.956

Ivy v1.4 1.065 1.081 1.005 1.005 1.026 0.999 1.036 1.020 1.062 1.037
Jedit v4.0 1.012 0.996 0.971 0.775 1.011 0.921 0.952 0.947 0.984 0.996

Log4j v1.0 1.047 1.034 1.000 0.960 1.012 0.895 0.961 0.954 0.993 1.002
Lucene v2.4 1.016 0.956 0.940 0.804 0.978 0.886 0.962 0.955 0.990 0.978

POI v3.0 0.932 0.899 0.955 0.739 0.993 0.946 0.965 0.971 1.016 1.003
Tomcat v6.0 1.014 1.016 0.947 0.875 0.997 0.925 0.985 0.990 1.045 1.026
Xalan v2.6 0.861 0.912 0.987 0.698 0.992 0.970 0.993 0.985 1.012 0.998
Xerces v1.3 1.032 1.022 0.969 0.817 1.019 1.017 1.034 1.033 1.005 1.012

N
A

SA

CM1 1.004 0.979 0.939 0.984 0.974 0.995 0.949 0.940 1.028 0.981
JM1 1.004 1.001 0.997 0.923 0.999 1.003 1.008 0.956 1.000 1.001
KC3 0.910 0.944 0.901 0.923 1.010 0.924 0.905 0.874 1.025 0.985
MC1 0.956 1.021 0.932 0.901 0.999 0.915 0.980 0.932 1.001 0.973
MC2 1.019 1.014 0.955 0.947 1.037 1.014 0.976 0.972 0.973 0.968
MW1 1.005 1.016 0.949 0.984 1.019 0.991 0.952 0.963 1.016 1.015
PC1 0.906 0.830 0.936 0.972 1.013 0.976 0.971 0.925 1.004 1.021
PC2 1.039 1.019 0.931 0.994 1.020 0.999 0.935 0.933 1.169 1.028
PC3 0.944 0.971 0.985 0.921 0.997 0.988 1.001 0.968 1.026 0.995
PC4 0.793 0.806 0.931 0.651 0.906 0.862 0.866 0.870 1.003 0.986
PC5 0.999 0.982 0.994 0.798 0.990 0.977 0.989 0.986 0.986 0.997

A
E

E
E

M

Eclipse JDT Core 1.028 1.010 1.019 0.874 1.007 0.959 1.015 0.986 0.993 1.012
Equinox 1.074 1.043 1.006 0.973 1.028 0.996 1.000 1.010 1.060 1.024

Apache Lucene 1.112 1.079 1.090 1.045 1.009 1.063 1.030 1.039 1.021 1.035
Mylyn 1.089 1.057 0.980 0.921 1.052 0.951 1.066 1.065 1.037 1.023

Eclipse PDE UI 1.071 1.058 1.075 0.861 1.035 0.944 1.020 0.905 0.995 1.006

Improved 17 15 5 2 14 4 8 5 17 15

(b) The unsupervised models

RBM AE PCA FM FA RP TCA TCA+ CFS ConFS

PR
O

M
IS

E

Ant v1.7 1.005 1.000 1.001 0.739 0.896 0.695 0.918 0.748 1.002 1.006
Camel v1.6 0.989 0.980 1.002 0.894 0.979 0.848 0.984 0.933 0.977 0.988

Ivy v1.4 1.040 1.011 1.006 0.938 0.850 0.750 0.991 0.874 0.937 0.928
Jedit v4.0 1.055 1.038 1.000 0.895 1.033 0.888 0.966 0.802 0.939 0.962

Log4j v1.0 0.993 0.989 1.001 0.950 0.973 0.694 0.924 0.790 0.954 0.986
Lucene v2.4 1.110 1.131 1.001 0.870 0.989 0.894 0.966 0.858 0.984 1.004

POI v3.0 0.919 0.924 1.002 0.755 1.036 0.875 0.610 0.755 0.962 0.982
Tomcat v6.0 1.041 1.007 0.997 0.762 0.956 0.652 1.007 0.763 1.010 0.968
Xalan v2.6 1.070 1.065 0.997 0.885 0.936 0.965 1.084 0.848 0.964 0.974
Xerces v1.3 1.244 1.210 1.008 0.885 1.259 0.893 1.201 0.939 1.106 1.017

N
A

SA

CM1 1.008 0.996 0.997 0.967 0.979 1.049 0.983 0.844 1.030 0.949
JM1 0.992 1.023 1.002 0.953 1.036 0.997 1.011 0.849 1.008 1.001
KC3 0.970 0.987 1.000 0.974 1.014 0.997 0.998 0.850 0.968 0.955
MC1 1.005 1.023 1.000 0.891 1.021 1.000 0.994 0.816 1.081 1.023
MC2 1.073 1.043 1.000 0.981 1.018 0.985 0.995 0.862 0.993 0.991
MW1 0.939 0.971 1.000 0.973 0.966 0.990 0.957 0.746 1.017 1.019
PC1 0.990 0.996 0.996 0.927 1.027 0.935 0.993 0.855 1.102 1.041
PC2 0.985 0.976 0.994 0.975 0.985 0.993 0.966 0.774 1.035 0.940
PC3 1.074 1.090 1.000 0.940 0.954 0.758 1.041 0.831 1.213 1.123
PC4 0.986 0.982 0.998 0.902 1.062 0.829 0.961 0.818 1.123 0.991
PC5 0.971 0.975 0.999 0.866 0.971 0.987 0.932 0.857 1.030 0.997

A
E

E
E

M

Eclipse JDT Core 1.121 1.089 0.997 0.888 0.957 0.995 1.107 0.805 1.017 1.007
Equinox 1.029 1.105 1.000 0.913 1.069 1.033 1.073 0.900 1.025 1.033

Apache Lucene 1.031 1.053 1.000 0.863 0.989 1.006 1.024 0.740 0.956 0.981
Mylyn 1.006 1.015 1.001 0.829 0.996 0.892 0.994 0.827 1.009 0.996

Eclipse PDE UI 1.015 1.024 1.000 0.827 0.980 0.977 0.993 0.793 1.003 1.024

Improved 16 15 9 0 10 3 8 0 16 11

21

22 Kondo et al.

between the smallest and the median of the 500 AUC values, and the third quartile is
the median between the median and the largest of the 500 AUC values. As we studied
26 projects, we have 26 IQR values for each feature reduction technique. We used the
Scott-Knott ESD test to compare the distributions of IQRs for each feature reduction
technique. Figure 7 shows the results of the Scott-Knott ESD test.

In addition, we compared the IQR values of the prediction models across the
feature reduction techniques for each project. Table 6 shows the results of the IQR
analysis at the project level. Each cell contains an IQR value that was computed from
500 bootstrapped median AUC values of the supervised and unsupervised prediction
models.

Results: The neural network-based feature reduction techniques, RBM and
AE, generate features that result in less variance across the supervised models
than the original features. Figure 7(a) shows that the original features (ORG) are
in the second rank, and RBM and AE belong to the first rank. Hence, RBM and AE
significantly improve the variance of the performance across the supervised defect
prediction models.

Almost all feature reduction techniques (except PCA) generate features that
have a significantly smaller performance variance across the unsupervised mod-
els than the original features. Figure 7(b) shows that the unsupervised models that
use features that were generated by PCA, or the original features are in the lowest
rank. Hence, using the feature reduction techniques (except PCA) in combination
with an unsupervised defect prediction model results in a small performance vari-
ance, which is helpful for practitioners.

The neural network-based feature reduction techniques improve the perfor-
mance variance of the supervised models for the largest number of projects. Ta-
ble 6(a) shows that the features that were generated by the neural network-based fea-
ture reduction techniques (RBM and AE) improved the performance variance (IQR)
across the studied supervised prediction models for the largest number of projects
compared to the other feature reduction techniques, and the original models. RBM
and AE also belong to the first rank of the overall performance variance result (Fig-
ure 7(a)).

The neural network-based feature reduction techniques improve the perfor-
mance variance of the unsupervised models for the largest number of projects.
Table 6(b) shows that the features that were generated by the neural network-based
feature reduction techniques (RBM and AE) improved the performance variance
across the studied unsupervised prediction models for the largest number of projects.
Interestingly, in terms of overall performance variance, TCA and TCA+ belong to
the first and the second rank (Figure 7(b)). However, the difference with the neu-
ral network-based feature reduction techniques is only small (TCA+) and negligible
(TCA), according to the Cliff’s delta effect size.

22

The Impact of Feature Reduction Techniques on Defect Prediction Models 23

Table 6 The IQR ratio for the feature reduction techniques in the studied supervised and unsupervised
prediction models. The gray cells refer to the ratios that are greater than 1.0. The “Improved” row indicates
the number of gray cells in the column.

(a) The supervised models

RBM AE PCA FM FA RP TCA TCA+ CFS ConFS

PR
O

M
IS

E

Ant v1.7 1.769 1.330 0.849 0.439 1.024 0.943 0.975 1.006 1.294 1.031
Camel v1.6 3.885 3.027 0.842 0.809 0.774 0.777 1.312 1.357 1.637 1.466

Ivy v1.4 1.841 2.964 1.978 2.197 2.001 1.151 3.641 1.233 1.340 2.072
Jedit v4.0 1.018 1.180 0.562 0.501 0.771 0.595 0.688 0.718 0.767 0.683
Log4j v1.0 1.335 2.643 1.030 5.212 1.388 1.898 1.252 1.189 1.361 1.377

Lucene v2.4 1.737 0.661 0.554 0.473 0.635 1.141 0.666 0.647 0.800 0.658
POI v3.0 0.973 0.586 0.628 0.241 0.959 1.642 0.894 0.977 1.268 1.157

Tomcat v6.0 1.351 1.429 0.671 0.657 1.096 0.739 0.854 0.921 1.369 1.204
Xalan v2.6 0.762 0.615 0.863 0.495 0.725 0.750 0.531 0.556 0.972 0.841
Xerces v1.3 1.918 1.749 0.806 1.022 0.847 0.943 1.064 1.078 1.171 1.417

N
A

SA

CM1 0.196 0.227 0.241 0.311 0.329 0.683 0.389 0.430 0.589 0.453
JM1 2.502 2.579 1.886 0.604 0.804 0.972 1.036 0.758 0.892 0.986
KC3 0.582 0.955 1.509 1.130 0.661 1.093 0.906 0.751 1.871 1.710
MC1 0.639 0.670 0.605 0.734 0.980 0.810 1.227 0.967 0.831 2.011
MC2 1.087 1.080 0.545 1.074 0.808 0.835 0.734 0.679 1.121 1.169
MW1 1.199 1.451 0.722 4.598 2.933 1.166 2.113 1.697 1.792 1.274
PC1 0.826 0.984 0.649 1.078 1.326 1.936 2.501 0.875 1.179 1.578
PC2 0.541 0.565 0.454 0.788 1.067 1.317 0.937 0.898 0.796 0.389
PC3 1.060 1.522 0.684 0.985 1.274 0.718 0.862 0.695 1.331 1.145
PC4 0.885 1.504 0.548 0.397 0.852 1.055 0.681 0.750 5.539 1.138
PC5 0.796 1.892 0.752 0.344 0.908 0.705 0.723 0.757 0.798 1.009

A
E

E
E

M

Eclipse JDT Core 1.332 1.433 1.246 0.434 1.556 0.998 1.373 0.970 1.072 1.393
Equinox 1.989 2.927 1.543 0.821 1.076 0.822 1.075 1.129 1.438 1.337

Apache Lucene 1.373 1.844 0.936 0.608 0.989 1.678 1.014 0.993 0.881 1.022
Mylyn 5.981 4.024 0.940 0.946 5.923 1.155 1.289 1.282 1.992 2.406

Eclipse PDE UI 1.574 1.208 1.096 0.224 0.392 0.374 0.434 0.384 0.475 0.452

Improved 17 18 7 7 11 11 12 8 16 19

(b) The unsupervised models

RBM AE PCA FM FA RP TCA TCA+ CFS ConFS

PR
O

M
IS

E

Ant v1.7 2.693 1.772 1.035 2.539 3.228 3.217 1.447 4.320 0.335 0.245
Camel v1.6 1.224 1.715 1.331 0.961 1.659 0.778 0.503 0.680 0.209 0.301

Ivy v1.4 2.881 4.073 0.924 2.096 3.690 3.628 3.317 3.076 2.809 2.153
Jedit v4.0 3.221 3.229 1.012 1.704 4.387 2.213 3.346 4.496 0.671 0.790
Log4j v1.0 3.400 3.445 1.221 1.346 0.542 0.977 1.562 0.783 0.762 0.793

Lucene v2.4 0.460 0.982 0.653 0.796 0.577 1.865 0.945 0.560 0.176 0.163
POI v3.0 0.764 0.582 1.152 7.759 1.425 7.589 4.332 2.842 0.415 0.927

Tomcat v6.0 2.993 1.985 1.116 2.326 3.566 4.079 1.512 5.814 0.630 0.904
Xalan v2.6 2.028 3.317 0.763 2.339 1.363 3.747 0.829 0.907 0.362 2.860
Xerces v1.3 8.508 6.308 1.132 11.297 6.729 10.673 2.089 10.157 4.720 0.980

N
A

SA

CM1 2.032 2.820 1.074 0.694 1.274 1.535 1.573 3.922 1.238 0.688
JM1 1.206 5.044 0.988 0.983 1.360 1.304 39.761 154.852 1.210 1.009
KC3 0.920 0.753 0.936 1.280 0.639 0.780 0.946 3.250 0.591 0.750
MC1 5.284 3.674 1.035 0.576 3.833 1.261 5.611 3.635 1.132 0.971
MC2 1.377 2.056 1.839 0.778 1.670 1.919 2.709 4.491 1.457 1.441
MW1 2.059 1.207 0.952 1.043 0.897 1.008 1.325 1.520 0.814 0.816
PC1 2.413 2.298 0.996 1.047 1.405 0.866 3.256 3.491 0.964 0.748
PC2 2.058 1.900 1.014 2.441 5.610 1.035 5.055 7.867 2.231 1.436
PC3 2.293 2.230 1.069 2.318 4.411 7.025 13.146 13.203 2.622 1.182
PC4 4.032 3.431 0.917 4.188 1.266 3.476 9.617 10.161 1.653 1.177
PC5 5.900 11.856 1.025 18.438 4.839 2.096 30.503 5.129 1.355 1.267

A
E

E
E

M

Eclipse JDT Core 15.497 15.262 0.973 1.727 1.290 3.088 20.680 8.202 1.104 1.505
Equinox 3.504 7.741 0.684 3.573 1.155 1.420 6.460 9.422 0.676 0.601

Apache Lucene 8.221 6.507 0.989 0.521 4.423 1.610 5.717 8.040 0.659 0.920
Mylyn 10.940 9.597 1.038 8.177 1.099 1.036 17.600 11.010 0.980 0.889

Eclipse PDE UI 3.237 2.806 1.068 0.690 1.235 0.465 5.627 6.956 0.389 0.366

Improved 23 23 15 18 22 21 22 22 11 9

23

24 Kondo et al.

●●●●●●0.5

0.6

0.7

0.8

0.9

CFS FA

Con
FS

ORG
TCA

TCA+ AE RP
RBM

PCA FM

A
U

C

(a) The supervised models

●●
●●

●●●

●

●
●

●

●

●
●

●

●
●

0.5

0.6

0.7

0.8

0.9

AE
RBM

CFS
PCA

ORG FA

Con
FS

TCA RP FM
TCA+

A
U

C

(b) The unsupervised models

Fig. 8 The Scott-Knott ESD test results for the supervised (logistic regression, random forest, naive
Bayes, decision tree, and logistic model tree) and unsupervised (spectral clustering, k-means, partition
around medoids, fuzzy C-means, neural-gas) models. Each color indicates a rank: models in different ranks
have a statistically significant difference in performance. Each boxplot has 130 median AUC values (5
defect prediction models times 26 projects). The x-axis refers to the feature reduction/selection techniques;
the y-axis refers to the AUC values.

5.3 RQ3: How do feature selection techniques compare to feature reduction
techniques when applied to defect prediction?

In this RQ, we compare feature reduction and selection techniques along two dimen-
sions: the performance and the performance variance of the defect prediction models.
We study the correlation-based (CFS) and consistency-based (ConFS) feature selec-
tion techniques, as they performed best according to prior studies [18, 76].

Motivation: In RQ1 and RQ2, we found that several feature reduction techniques
(FA, RBM and AE) outperform the original features (ORG) in terms of performance
or performance variance of the defect prediction models. Prior work [18, 76] showed
that several feature selection techniques outperform the original models as well. In
this RQ, we compare the performance (AUC) and the performance variance (IQR)
of the feature reduction and selection techniques when applied to defect prediction
models.

Approach: The experimental procedure is the same as the procedures of RQ1 and
RQ2 (only we use the two feature selection techniques CFS and ConFS instead of the
feature reduction techniques).

Results: The feature selection techniques (correlation-based feature selection
(CFS) and consistency-based feature selection technique (ConFS)) significantly
outperform the original features (ORG) in the supervised models, and perform
as well as the feature agglomeration (FA) reduction technique. Figure 8(a) shows
the AUC values and the results of the Scott-Knott ESD test for the supervised models

24

The Impact of Feature Reduction Techniques on Defect Prediction Models 25

●

●

●

●

●

0.0

0.1

0.2

0.3

AE
CFS

RBM

Con
FS FA TCA

ORG RP
TCA+

PCA FM

IQ
R

(a) The supervised models

●

●

●
●

●

●●

●

●●
●

●
●

0.0

0.1

0.2

0.3

TCA+
TCA AE

RBM FA RP FM
PCA

ORG
CFS

Con
FS

IQ
R

(b) The unsupervised models

Fig. 9 The Scott-Knott ESD test results for IQR in the supervised and unsupervised models. Each color
indicates a rank: feature reduction/selection techniques in different ranks have a significant difference in
variance (IQR). Each boxplot has 26 IQR values (one for each project). The x-axis refers to the feature
reduction/selection techniques; the y-axis refers to the IQR values.

after applying the studied feature reduction and selection techniques.2 Each boxplot
shows the median AUC values for the projects using a certain feature reduction/se-
lection technique. CFS, ConFS and FA are in the highest rank by themselves, which
indicates that the subsets of features that were selected by CFS or ConFS perform as
well as the feature sets that were generated by FA for the supervised models.

The neural network-based feature reduction techniques (RBM and AE) sig-
nificantly outperform the feature selection techniques (CFS and ConFS) for the
unsupervised defect prediction models. The highest rank contains only the two
studied neural network-based feature reduction techniques (Figure 8(b)). The studied
feature selection techniques (CFS and ConFS) belong to the second rank, together
with the original models (ORG). Hence, the studied feature selection techniques have
a worse performance than the neural network-based feature reduction techniques for
the unsupervised defect prediction models.

In the supervised models, applying the neural network-based feature reduc-
tion techniques, RBM and AE, or the feature selection techniques, CFS and
ConFS, significantly outperforms the original models in terms of performance
variance. The original models (ORG) belong to the third rank (Figure 9(a)). The neu-
ral network-based feature reduction techniques and the feature selection techniques
belong to the first or second rank, hence they have a smaller performance variance
than the original models.

In the unsupervised models, all feature reduction techniques (except PCA)
significantly outperform the feature selection techniques in terms of performance
variance. The feature selection techniques belong to the worst rank together with the
original models (ORG) and PCA (Figure 9(b)). Hence, the studied feature selection
had a larger performance variance than almost all the studied feature reduction tech-
niques for the unsupervised defect prediction models.

Our above findings for RQ3 are confirmed by our project-level analysis. Ta-
ble 5 shows the median ratios of the performance of each feature reduction/selection

2 Note that the ranks are slightly different from Figure 4 due to the fact that Scott-Knott ESD is a
clustering algorithm, and hence affected by the total set of input distributions. For more information see
https://github.com/klainfo/ScottKnottESD.

25

https://github.com/klainfo/ScottKnottESD

26 Kondo et al.

technique compared to the original models. We calculated this ratio as follows:

ratio =
AUCFRS

AUCORG

Where AUCORG is the AUC (the median AUC across all bootstrap samples) of a pre-
diction model using the original features, and AUCFRS is the AUC of a prediction
model using the features that were generated/selected by a particular feature reduc-
tion or selection technique. We computed the median ratio across the five studied
supervised and unsupervised prediction models. Table 5 confirms our above findings
about the performance of the studied feature selection techniques compared to that of
the feature reduction techniques.

Table 6 shows the IQR ratio values of each feature reduction/selection technique.
We define this ratio as follows:

ratio =
IQRFRS

IQRORG

Where IQRORG is the IQR (the median IQR across all bootstrap samples) of a predic-
tion model using the original features, and IQRFRS is the IQR of a prediction model
using the features that were generated/selected by a particular feature reduction or
selection technique. We calculated the median IQR value for the supervised models
using bootstrap samples as follows:

1. Sample 100 values following the distribution of the 100 AUC values for each
studied supervised model while allowing for replacement.

2. Compute the median AUC value across the sampled 100 values.
3. Repeat steps 1 and 2 100 times.
4. Compute the IQR value for the 500 sampled median AUC values (5 supervised

prediction models * 100 median AUC values) for each feature reduction/selection
technique for each studied project.

We repeated the above procedure for the unsupervised models. Table 6(a) shows
that the project-level results confirm our findings above, as the RBM and AE feature
reduction techniques and the CFS and ConFS feature selection techniques improve
the performance variance of most projects compared to the other techniques. In addi-
tion, Table 6(b) shows that all feature reduction techniques improve the performance
variance of more projects than the CFS and ConFS feature selection techniques.

5.3.1 Why do feature reduction techniques work well in the AEEEM dataset?

Motivation: We observed that the feature reduction techniques work better for the
projects in the AEEEM dataset than for the projects in the other datasets. Ghotra et
al. [18] applied PCA to the data of each project to capture its richness. We use the
same analysis to investigate whether the dataset richness is an explanation of why
feature reduction techniques work better for the AEEEM dataset.

Approach: The idea behind Ghotra et al.’s analysis [18] is to generate features
from a dataset using PCA that (together) retain at least 95% of the variance of the

26

The Impact of Feature Reduction Techniques on Defect Prediction Models 27

Table 7 The number of generated features (principal components) that are needed to account for 95% of
the data variance.

Studied Studied # of Studied # of Generated % of Generated
Dataset Project Features Features Features

PROMISE Ant v1.7 20 12 60.0
Camel v1.6 20 12 60.0
Ivy v1.4 20 10 50.0
Jedit v4.0 20 12 60.0
Log4j v1.0 20 12 60.0
Lucene v2.4 20 12 60.0
POI v3.0 20 12 60.0
Tomcat v6.0 20 12 60.0
Xalan v2.6 20 12 60.0
Xerces v1.3 20 12 60.0

NASA CM1 37 11 29.7
JM1 21 8 38.1
KC3 39 10 25.6
MC1 38 15 39.5
MC2 39 11 28.2
MW1 37 11 29.7
PC1 37 12 32.4
PC2 36 10 27.8
PC3 37 13 35.1
PC4 37 14 37.8
PC5 38 15 39.5

AEEEM Eclipse JDT Core 212 36 17.0
Equinox 212 31 14.6
Apache Lucene 212 33 15.6
Mylyn 212 46 21.7
Eclipse PDE UI 212 38 17.9

original dataset. Ghotra et al. reason that a larger number of generated features in-
dicates a richer dataset. Likewise, they interpret that a small number of generated
features indicates redundancy in the original dataset. We applied PCA to each project
and counted the number of generated features.

Results: The PROMISE, NASA, and AEEEM datasets have different data
richness characteristics, however; the characteristics of the projects within each
dataset are consistent. Table 7 shows the number of generated features. While the
number of generated features is approximately the same for the PROMISE and NASA
projects, the proportion of generated features compared to the number of original fea-
tures is different. In addition, this proportion is even lower for the AEEEM projects.
Hence, we conclude that the datasets have different characteristics in terms of data
richness. However, within each dataset, the projects have approximately the same
richness characteristics.

The original features of the projects in the AEEEM dataset are more diverse
than the projects of the other datasets. We observe that 36 principal components
are needed to cover 95% of the variance of the Eclipse JDT Core project in Figure 10,
compared to 12 components for the Ant project and 11 for the CM1 project. Hence,
the original features of the AEEEM dataset are much more diverse than those of the

27

28 Kondo et al.

●

●

●

●
●

●
●

●
● ●

0.00

0.25

0.50

0.75

1.00

0 10 20 30
Number of features/principal components

T
he

 c
um

ul
at

iv
e

pr
op

or
tio

n
of

 th
e

va
ria

nc
e

● Ant v1.7 (PROMISE) CM1 (NASA) Eclipse JDT Core (AEEEM)

Fig. 10 The number of principal components (features that were generated by PCA) that are needed to
account for the original data variance for the Ant, CM1 and Eclipse projects in the PROMISE, NASA
and AEEEM datasets. The x-axis indicates the number of principal components. The y-axis indicates the
cumulative proportion of the variance. The other projects of the datasets showed a similar pattern.

PROMISE and the NASA datasets. The diversity of the AEEEM dataset could be a
reason why feature reduction techniques improve the performance of this dataset.

5.3.2 Comparing feature selection and reduction techniques along the dimensions of
understandability and execution time

The understandability of the metrics in a defect prediction model is important, as
understandable metrics make the model, and its predictions, easier to explain [68].
Feature reduction techniques combine the original features into one or more newly-
generated features. Hence, these newly-generated features are by definition harder to
understand than the features that are a subset (i.e., they were selected) of the original
features. We inspected the feature sets that were generated during our experiments,
and we observed that almost all generated feature sets consist of features that are
a complex combination of all available original features. Hence, defect prediction
models that are generated using feature reduction techniques are harder to understand
than those that use feature selection.

In addition, the execution time of a feature reduction/selection technique and a
defect prediction model is important – models that take too long to build or execute
are not very useful in practice. To conduct our experiments in a timely manner, we ran
them on a cluster of servers in parallel. Hence, it is difficult to compare the execution
time of the experiments. In general, the execution time of our feature reduction/selec-
tion techniques and defect prediction models was short (i.e., in the range of minutes).
Therefore, execution time is not a very problematic metric for practitioners who wish
to apply feature reduction or selection to their defect prediction models.

28

The Impact of Feature Reduction Techniques on Defect Prediction Models 29

6 Discussion: Which features are generated by the feature reduction
techniques?

In RQ1, RQ2, and RQ3, we observed that some feature reduction/selection tech-
niques generate/select features that perform defect prediction better and less variance
than the features that were generated/selected by other feature reduction/selection
techniques. In particular, we found that RBM and AE outperform the other studied
feature reduction/selection techniques for the unsupervised models. However, RBM
and AE are less-performing feature reduction techniques than the original models
(ORG) for the supervised models. In this discussion, we take a closer look at the gen-
erated features to investigate why neural network-based feature reduction techniques
perform well for the unsupervised defect prediction models, but not for the super-
vised models. In this section, we discuss possible explanations for the differences in
AUC and variance of the performance.

Approach: We focused our discussion on the RBM and AE feature reduction
techniques, as these techniques generate new features by assigning (combinations
of) weights to the original features. For example, a newly generated feature may be
generated by 0.5 times original metric 1 and 0.5 times original metric 2. These weight
sets allow us to study how the new features are related to the original features, and
to the features that were generated by other feature reduction techniques, and extract
possible explanations for the improved and small variance of the performance. RP
and PCA also generate new features by assigning weights to the original features,
however, the weights of RP are randomly generated, and PCA generates a different
number of features for each project, which makes them difficult to compare. Hence,
we focused our discussion on RBM and AE. As we generated 100 new feature sets
of 10 features using RBM and AE, we generated 1,000 weight sets using these two
feature reduction techniques for each project. For each feature reduction technique,
we randomly selected 10 (out of the 100) generated feature sets for our investigation.

We conducted correlation analysis and clustering analysis on the studied fea-
ture sets to study their similarity within and across projects. The correlation analysis
shows how independent the features that are generated for a project are. Highly cor-
related features can negatively impact the performance of regression models [15] and
this effect can affect our supervised models as well. We first calculated the Spearman
rank correlation [82] between the generated features in a feature set within a project.
Each generated feature was normalized using the z-score. We chose Spearman rank
correlation because it is non-parametric, and therefore requires no assumption about
the distribution of the studied data.

To study the similarity of the generated feature sets across projects within a
dataset, we compared the weight sets of the generated features. First, we normal-
ized all weights using z-score normalization. Second, we used k-means to cluster the
weight sets of the features, and then we used t-distributed stochastic neighbour em-
bedding (t-SNE) [41] to visualize the clustering results. t-SNE is commonly used for
visualizing high dimensional features in scatter plots [40]. In particular, t-SNE mod-
els high-dimensional objects (i.e., feature sets) by two- or three-dimensional points
such that similar objects are close, and dissimilar objects are further away from each
other.

29

30 Kondo et al.

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
8

H
9

H
10

H10

H9

H8

H7

H6

H5

H4

H3

H2

H1

1.000

1.000 1.000

1.000 1.000 1.000

1.000 1.000 0.999 1.000

1.000 1.000 1.000 1.000 1.000

1.000 0.999 1.000 0.999 0.998 1.000

1.000 1.000 1.000 1.000 1.000 0.999 1.000

1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000

1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 1.000

(a) RBM-generated features in
the Ant project in the PROMISE
dataset.

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
8

H
9

H
10

H10

H9

H8

H7

H6

H5

H4

H3

H2

H1

1.000

1.000 0.445

1.000 0.235 0.911

1.000 0.575 0.863 0.766

1.000 0.611 0.894 0.256 0.904

1.000 0.946 0.589 0.973 0.237 0.930

1.000 0.328 0.342 0.913 0.320 0.982 0.531

1.000 0.977 0.186 0.209 0.836 0.187 0.994 0.399

1.000 0.486 0.616 0.851 0.825 0.819 0.840 0.534 0.914

1.000 0.609 0.977 0.995 0.328 0.348 0.916 0.319 0.985 0.532

(b) RBM-generated features
in the Eclipse project in the
AEEEM dataset.

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
8

H
9

H
10

H10

H9

H8

H7

H6

H5

H4

H3

H2

H1

1.000

1.000 1.000

1.000 1.000 1.000

1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(c) RBM-generated features in
the Eclipse project using change
features in the AEEEM dataset.

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
8

H
9

H
10

H10

H9

H8

H7

H6

H5

H4

H3

H2

H1

1.000

1.000 0.902

1.000 0.878 0.933

1.000 0.901 0.845 0.884

1.000 0.902 0.886 0.844 0.889

1.000 0.796 0.844 0.902 0.829 0.837

1.000 0.747 0.732 0.767 0.768 0.850 0.781

1.000 0.874 0.854 0.832 0.879 0.883 0.883 0.853

1.000 0.836 0.768 0.768 0.893 0.886 0.865 0.889 0.915

1.000 0.852 0.918 0.800 0.809 0.845 0.899 0.863 0.876 0.841

(d) AE-generated features in the
Log4j project in the PROMISE
dataset.

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
8

H
9

H
10

H10

H9

H8

H7

H6

H5

H4

H3

H2

H1

1.000

1.000 0.235

1.000 0.374 0.167

1.000 0.035 0.768 0.249

1.000 0.079 0.376 0.333 0.034

1.000 0.475 0.404 0.343 0.546 0.041

1.000 0.067 0.074 0.425 0.087 0.404 0.640

1.000 0.562 0.273 0.275 0.205 0.265 0.442 0.605

1.000 0.058 0.173 0.631 0.001 0.604 0.148 0.463 0.030

1.000 0.306 0.343 0.230 0.343 0.331 0.533 0.462 0.579 0.216

(e) AE-generated features in the
Camel project in the PROMISE
dataset.

Fig. 11 The Spearman rank correlation of generated features in the studied datasets. The darker colours
indicate a strong absolute correlation (close or equal to one). The lighter colours indicate a weak absolute
correlation (close or equal to zero).

The goal of our clustering analysis is to find out how similar the generated features
are across projects within a dataset. Hence, we configured k-means to search for 10
clusters (as we are generating 10 new features). We visualized the clustering results
using the default settings of t-SNE.

Results: RBM generates feature sets in which all features are strongly cor-
related with each other. Figure 11(a) shows the Spearman rank correlation of one
set of RBM-generated features for the Ant project in the PROMISE dataset using a
heatmap. We observe that all correlations are close to 1 (dark red), which means that
all RBM-generated features in the feature set are strongly correlated (and hence sim-
ilar) to each other. We observe similar correlations for the other studied feature sets
for the PROMISE and NASA datasets. RBM generates weakly correlated features for
several projects in the AEEEM dataset (e.g., for the Eclipse project: Figure 11(b)).
However, if we use a smaller set of original features from that dataset, such as only
the change features, RBM generates strongly correlated features for these projects as
well (e.g., for the Eclipse project: Figure 11(c)).

We observe similar correlations in feature sets that were generated by AE. How-
ever, the correlation within the AE-generated feature sets appeared to be linked to
the specific project. For example, AE generates sets of features that are strongly cor-

30

The Impact of Feature Reduction Techniques on Defect Prediction Models 31

20 10 0 10 20 30
t-SNE feature1

20

10

0

10

20

30

t-S
NE

 fe
at

ur
e2

(a) RBM-generated weight sets in the
PROMISE dataset.

30 20 10 0 10 20 30 40
t-SNE feature1

30

20

10

0

10

20

30

t-S
NE

 fe
at

ur
e2

(b) RBM-generated weight sets in the NASA
dataset.

80 60 40 20 0 20 40 60
t-SNE feature1

60

40

20

0

20

40

60

t-S
NE

 fe
at

ur
e2

(c) RBM-generated weight sets in the
AEEEM dataset.

40 30 20 10 0 10 20 30 40
t-SNE feature1

60

40

20

0

20

40

60
t-S

NE
 fe

at
ur

e2

(d) RBM-generated weight sets using Change
features in the AEEEM dataset.

150 100 50 0 50 100 150
t-SNE feature1

100

75

50

25

0

25

50

75

100

t-S
NE

 fe
at

ur
e2

(e) RBM-generated weight sets using com-
plexity code change features in the AEEEM
dataset.

60 40 20 0 20 40 60
t-SNE feature1

40

20

0

20

40

60

t-S
NE

 fe
at

ur
e2

(f) AE-generated weight sets in the
PROMISE dataset.

30 20 10 0 10 20
t-SNE feature1

30

20

10

0

10

20

30

t-S
NE

 fe
at

ur
e2

(g) AE-generated weight sets in the NASA
dataset.

40 20 0 20 40
t-SNE feature1

60

40

20

0

20

40

60

t-S
NE

 fe
at

ur
e2

(h) AE-generated weight sets using Change
features in the AEEEM dataset.

Fig. 12 k-means clustering results with t-SNE for generated weight sets in the studied datasets. Each shape
represents a project, and each color represents a cluster.

31

32 Kondo et al.

related to each other for the Log4j project (see Figure 11(d)), but features that are
not as strongly correlated for the Camel project (see Figure 11(e)). Hence, a possible
explanation of the reason for the small variance of the performance of features that
were generated by the neural network-based feature reduction techniques (i.e., RBM
and AE) could be the strong correlation within the generated feature sets.

RBM mostly generates the same feature sets across projects. Figure 12(a)
shows the k-means clustering result for one bootstrap sample of the RBM-generated
weight sets in the PROMISE dataset using t-SNE [40]. Each shape refers to a project,
and each color refers to a cluster that was identified by k-means clustering. The x-
axis and y-axis refer to the t-SNE features that were generated from the 260 RBM-
generated weight sets (10 weight sets on each project) by t-SNE. Hence, if there are
10 clearly identifiable groups of different shapes with the same colour in the t-SNE
plot, we can conclude that the generated weight sets (and hence the features) are the
same across projects. We observe that each colored cluster contains all shapes, which
indicates that each cluster contains all projects. Hence, in this bootstrap sample, RBM
generated the same feature sets across projects in the PROMISE dataset. We noticed
a similar pattern for the other projects in the PROMISE dataset for the other bootstrap
samples.

Figure 12(b) shows the result for the RBM-generated weight sets in the NASA
dataset. The figure shows that RBM generated different feature sets across projects in
the NASA dataset. A possible reason is that the original features in the NASA dataset
are different in each project (Table 2).

Figure 12(c) shows the result for the RBM-generated weight sets in the AEEEM
dataset. The figure shows that RBM generated different feature sets across projects
in the AEEEM dataset. The explanation is similar to our observation during the cor-
relation analysis. If we use one type of features, such as only the change features,
Figure 12(d) shows that RBM generates the same feature sets across projects. How-
ever, if we use complexity code change features, we observe that RBM generates
different feature sets across projects (Figure 12(e)). AE generated different features
across projects (Figure 12(f), 12(g) and 12(h)).

From the discussion results, we can extract several possible explanations for the
fact that RBM and AE significantly improve the variance of the performance across
the unsupervised models, but not across the supervised models, and for why these fea-
ture reduction techniques perform well for the unsupervised models. As the studied
neural network-based feature reduction techniques appear to generate strongly corre-
lated features for a project, these feature sets suffer from multicollinearity [15], which
is known to negatively affect the performance of the supervised models. However, as
the unsupervised defect prediction models do not need to be trained, these models
are not be affected by the multicollinearity problem. In addition, because RBM gen-
erates strongly correlated features for a project, the unsupervised models become
much simpler, which seems to improve the variance of the performance across the
unsupervised defect prediction models.

32

The Impact of Feature Reduction Techniques on Defect Prediction Models 33

7 Threats to validity

7.1 External validity

With regards to the generalizability of our results, we applied our experiments to three
publicly available datasets. These studied datasets (PROMISE, NASA and AEEEM)
were all used in many prior defect prediction studies. The projects in these studied
datasets span different domains, include both open source and industrial projects and
contain different features. Future studies are necessary to investigate whether our
results generalize to other projects.

In addition, we studied only a subset of the many existing feature reduction and
selection techniques and defect prediction models. We carefully selected techniques
and models that have been used before for defect prediction, and that have an imple-
mentation readily available. Without such an implementation, it is difficult and time-
consuming to ensure that the implementation matches the one used in prior studies.
Future studies are necessary to investigate whether our results apply to other feature
reduction/selection techniques and defect prediction models.

7.2 Internal validity

In our experiments, we used AUC as a performance measure. AUC is a popular per-
formance measure for defect prediction, as it does not require a threshold. However,
different software project teams may have different objectives. Hence, future studies
should investigate the impact of feature reduction techniques on other performance
measures, while keeping in mind the possible pitfalls of studying threshold-dependent
performance measures [71].

When using the out-of-sample bootstrap sampling, we encountered computa-
tional errors in two bootstrap samples. The errors occurred because two bootstrap
samples violated requirements of the NB and SC models (e.g., a generated feature
had a variance of zero which violates a requirement of the NB model). To mitigate
this threat, we discarded these bootstrap samples and generated a new sample instead.

We provide all experimental scripts that we used in our study.3 This replication
package allows researchers and practitioners to replicate our experiments and confirm
our results.

8 Conclusion

In defect prediction, reducing the number of features is an important step when build-
ing defect prediction models [5, 15, 67, 69]. Prior studies indicated that reducing the
number of features avoids the problem of multicollinearity [15] and the curse of di-
mensionality [5]. Feature selection and reduction techniques help to reduce the num-
ber of features in a model. Feature selection techniques reduce the number of features
in a model by selecting the most important ones, while feature reduction techniques

3 https://sailhome.cs.queensu.ca/replication/featred-vs-featsel-defectpred/

33

https://sailhome.cs.queensu.ca/replication/featred-vs-featsel-defectpred/

34 Kondo et al.

reduce the number of features by creating new, combined features from the original
features.

Prior work [18, 76] studied the impact of feature selection techniques on defect
prediction models. Our work is the first large-scale study on the impact of feature
reduction techniques on defect prediction models. In particular, we studied the im-
pact of eight feature reduction techniques on five supervised and five unsupervised
defect prediction models. In addition, we compared the impact of feature reduction
techniques on defect prediction with the impact of the two best-performing feature
selection techniques (according to prior work).

We studied the impact of feature reduction/selection techniques on defect predic-
tion models along two dimensions:

1. The defect prediction performance (AUC) of the features that are generated by
the feature reduction/selection techniques, to study whether feature reduction/se-
lection techniques can improve the performance of defect prediction models.

2. The variance of the AUC across defect prediction models that use the features that
are generated by feature reduction or selected by feature selection techniques. It is
difficult to select the best performing model for each project, since the best model
may change per project [17, 19]. Hence, we studied whether feature reduction or
selection techniques can relieve the burden for practitioners of having to choose
the best performing defect prediction model for their data.

Below, we summarize the main recommendations that follow from our work.
Recommendation 1: For the supervised defect prediction models, use the

correlation-based (CFS) or consistency-based (ConFS) feature selection tech-
niques. Our experiments in RQ3 show that, for the supervised models, CFS and
ConFS outperform the feature reduction techniques (except feature agglomeration
(FA)) and the original models. While FA has a similar performance, CFS and ConFS
have a smaller performance variance. Hence, using CFS or ConFS in combination
with a supervised defect prediction model allows practitioners to improve the per-
formance of their defect prediction models, while making the choice for a particular
defect prediction model easier as well.

Recommendation 2: For the unsupervised defect prediction models, use a
neural network-based technique (Restricted Boltzmann Machine (RBM) or au-
toencoder (AE)). Our experiments in RQs 1 and 3 show that the RBM and AE feature
reduction technique can significantly improve the performance of the unsupervised
defect prediction models compared to the other feature reduction/selection techniques
and the original models. In addition, we observed in RQs 2 and 3 that RBM and
AE significantly improve the performance variance across the unsupervised mod-
els (except compared to the transfer component analyses (TCA and TCA+)). While
the transfer component analyses (TCA and TCA+) have the smallest performance
variance, they have a worse performance than RBM and AE. The effect size (Cliff’s
Delta) between the transfer component analyses and the neural network-based feature
reduction techniques is negligible or small for the performance variance in favour
of the transfer component analyses, but small (TCA) or large (TCA+) for the per-
formance in favour of the neural network-based techniques. Hence, using a neural
network-based feature reduction technique to preprocess the data of the unsupervised

34

The Impact of Feature Reduction Techniques on Defect Prediction Models 35

defect prediction models can improve both their performance and relieve the burden
for practitioners of having to select the best-performing unsupervised defect predic-
tion model for their project.

Recommendation 3: If a project has diverse data, the neural network-based
techniques (Restricted Boltzmann Machine (RBM) or autoencoder (AE)) are
likely to improve its defect prediction performance and performance variance.
Our experiments showed that RBM and AE consistently improve the AUC and IQR
of projects in the AEEEM dataset, for both supervised and unsupervised models.
Practitioners should run PCA on their data to identify the diversity of their project’s
data (similar to what we did in Section 5.3.1). If the data turns out to be rich, RBM
and AE are good options to improve the defect prediction performance and variance.

Acknowledgment

This work was partially supported by NSERC as well as JSPS KAKENHI (Grant
Numbers: JP16K12415 and JP18H03222).

References

1. Scikit learn: Minmaxscaler. http://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.MinMaxScaler.html. [Online; ac-
cessed 1-July-2018]

2. Abaei, G., Rezaei, Z., Selamat, A.: Fault prediction by utilizing self-organizing
map and threshold. In: Proceedings of the International Conference on Control
System, Computing and Engineering (ICCSCE), pp. 465–470. IEEE (2013)

3. Arora, I., Tetarwal, V., Saha, A.: Open issues in software defect prediction. Pro-
cedia Computer Science 46, 906–912 (2015)

4. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design
metrics as quality indicators. IEEE Transactions on Software Engineering (TSE)
22(10), 751–761 (1996)

5. Bellman, R.: Dynamic programming. Princeton University Press (1957)
6. Bingham, E., Mannila, H.: Random projection in dimensionality reduction: ap-

plications to image and text data. In: Proceedings of the 7th International Con-
ference on Knowledge Discovery and Data Mining, pp. 245–250. ACM (2001)

7. Bishnu, P.S., Bhattacherjee, V.: Software fault prediction using quad tree-based
k-means clustering algorithm. IEEE Transactions on Knowledge and Data Engi-
neering 24(6), 1146–1150 (2012)

8. Challagulla, V.U.B., Bastani, F.B., Yen, I.L., Paul, R.A.: Empirical assessment
of machine learning based software defect prediction techniques. International
Journal on Artificial Intelligence Tools 17(02), 389–400 (2008)

9. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Transactions on Software Engineering (TSE) 20(6), 476–493 (1994)

10. Cohen, J.: Statistical power analysis for the behavioral sciences (1988)

35

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

36 Kondo et al.

11. D’Ambros, M., Lanza, M., Robbes, R.: An extensive comparison of bug predic-
tion approaches. In: Proceedings of the 7th International Conference on Mining
Software Repositories (MSR), pp. 31–41. IEEE (2010)

12. Dash, M., Liu, H.: Consistency-based search in feature selection. Artificial intel-
ligence 151(1), 155–176 (2003)

13. Dunn, J.C.: A fuzzy relative of the isodata process and its use in detecting com-
pact well-separated clusters. J. Cybernet 3, 32–57 (1973)

14. Faloutsos, C., Lin, K.I.: FastMap: A fast algorithm for indexing, data-mining and
visualization of traditional and multimedia datasets. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, pp. 163–174. ACM
(1995)

15. Farrar, D.E., Glauber, R.R.: Multicollinearity in regression analysis: the problem
revisited. The Review of Economic and Statistics 49(1), 92–107 (1967)

16. Gao, K., Khoshgoftaar, T.M., Wang, H., Seliya, N.: Choosing software metrics
for defect prediction: an investigation on feature selection techniques. Software:
Practice and Experience 41(5), 579–606 (2011)

17. Ghotra, B., McIntosh, S., Hassan, A.E.: Revisiting the impact of classification
techniques on the performance of defect prediction models. In: Proceedings of
the 37th International Conference on Software Engineering (ICSE), pp. 789–800.
IEEE Press (2015)

18. Ghotra, B., Mcintosh, S., Hassan, A.E.: A large-scale study of the impact of
feature selection techniques on defect classification models. In: Proceedings of
the 14th International Conference on Mining Software Repositories (MSR), pp.
146–157. IEEE Press (2017)

19. Gray, A.R., Macdonell, S.G.: Software metrics data analysis–exploring the rela-
tive performance of some commonly used modeling techniques. Empirical Soft-
ware Engineering 4(4), 297–316 (1999)

20. Guo, L., Cukic, B., Singh, H.: Predicting fault prone modules by the dempster-
shafer belief networks. In: Proceedings of the 18th International Conference on
Automated Software Engineering (ASE), pp. 249–252. IEEE (2003)

21. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. ACM SIGKDD explorations newsletter
11(1), 10–18 (2009)

22. Hall, M.A.: Correlation-based feature selection for machine learning. Ph.D. the-
sis, University of Waikato Hamilton (1999)

23. Hall, M.A., Holmes, G.: Benchmarking attribute selection techniques for dis-
crete class data mining. IEEE Transactions on Knowledge and Data Engineering
15(6), 1437–1447 (2003)

24. Halstead, M.H.: Elements of software science, vol. 7. Elsevier New York (1977)
25. Han, J., Moraga, C.: The influence of the sigmoid function parameters on the

speed of backpropagation learning. In: Proceedings of the International Work-
shop on Artificial Neural Networks, pp. 195–201. Springer (1995)

26. Hartigan, J.A., Wong, M.A.: Algorithm as 136: A k-means clustering algorithm.
Journal of the Royal Statistical Society. Series C (Applied Statistics) 28(1), 100–
108 (1979)

36

The Impact of Feature Reduction Techniques on Defect Prediction Models 37

27. Hassan, A.E.: Predicting faults using the complexity of code changes. In: Pro-
ceedings of the 31st International Conference on Software Engineering (ICSE),
pp. 78–88. IEEE Computer Society (2009)

28. He, Z., Shu, F., Yang, Y., Li, M., Wang, Q.: An investigation on the feasibility
of cross-project defect prediction. Automated Software Engineering 19(2), 167–
199 (2012)

29. Herbold, S.: Training data selection for cross-project defect prediction. In: Pro-
ceedings of the 9th International Conference on Predictive Models in Software
Engineering, p. 6. ACM (2013)

30. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with
neural networks. Science 313(5786), 504–507 (2006)

31. Hira, Z.M., Gillies, D.F.: A review of feature selection and feature extraction
methods applied on microarray data. Advances in Bioinformatics 2015 (2015).
Art. ID 198363

32. Ho, T.K.: Random decision forests. In: Proceedings of the 3rd International
Conference on Document Analysis and Recognition, vol. 1, pp. 278–282. IEEE
(1995)

33. Jureczko, M., Madeyski, L.: Towards identifying software project clusters with
regard to defect prediction. In: Proceedings of the 6th International Conference
on Predictive Models in Software Engineering, p. 9. ACM (2010)

34. Kamei, Y., Fukushima, T., McIntosh, S., Yamashita, K., Ubayashi, N., Hassan,
A.E.: Studying just-in-time defect prediction using cross-project models. Empir-
ical Software Engineering 21(5), 2072–2106 (2016)

35. Kaufman, L., Rousseeuw, P.J.: Finding groups in data: an introduction to cluster
analysis, vol. 344. John Wiley & Sons (2009)

36. Kim, S., Zimmermann, T., Whitehead Jr, E.J., Zeller, A.: Predicting faults from
cached history. In: Proceedings of the 29th International Conference on Software
Engineering (ICSE), pp. 489–498. IEEE Computer Society (2007)

37. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–
1480 (1990)

38. Kuhn, M.: Caret: classification and regression training. Astrophysics Source
Code Library (2015)

39. Landwehr, N., Hall, M., Frank, E.: Logistic model trees. Machine Learning
59(1), 161–205 (2005)

40. van der Maaten, L.: Accelerating t-SNE using tree-based algorithms. Journal of
Machine Learning Research 15(1), 3221–3245 (2014)

41. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. Journal of Ma-
chine Learning Research 9(Nov), 2579–2605 (2008)

42. Martinetz, T., Schulten, K.: A “neural-gas” network learns topologies. Artificial
Neural Networks 1, 397–402 (1991)

43. McCabe, T.J.: A complexity measure. IEEE Transactions on Software Engineer-
ing (TSE) SE-2(4), 308–320 (1976)

44. McDonald, J.H.: Handbook of Biological Statistics (3rd ed.). Sparky House
Publishing, Baltimore, Maryland. (2014)

45. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn
defect predictors. IEEE Transactions on Software Engineering (TSE) 33(1), 2–

37

38 Kondo et al.

13 (2007)
46. Menzies, T., Owen, D., Richardson, J.: The strangest thing about software. Com-

puter 40(1), 54–60 (2007)
47. Moser, R., Pedrycz, W., Succi, G.: A comparative analysis of the efficiency of

change metrics and static code attributes for defect prediction. In: Proceedings
of the 30th International Conference on Software Engineering (ICSE), pp. 181–
190. IEEE (2008)

48. Muthukumaran, K., Rallapalli, A., Murthy, N.: Impact of feature selection tech-
niques on bug prediction models. In: Proceedings of the 8th India Software
Engineering Conference, pp. 120–129. ACM (2015)

49. Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures.
In: Proceedings of the 28th International Conference on Software Engineering
(ICSE), pp. 452–461. ACM (2006)

50. Nam, J.: Survey on software defect prediction. HKUST PhD Qualifying Ex-
amination, Department of Compter Science and Engineerning, The Hong Kong
University of Science and Technology, Tech. Rep (2014)

51. Nam, J., Fu, W., Kim, S., Menzies, T., Tan, L.: Heterogeneous defect prediction.
IEEE Transactions on Software Engineering (2017)

52. Nam, J., Kim, S.: CLAMI: Defect prediction on unlabeled datasets. In: Proceed-
ings of the 30th International Conference on Automated Software Engineering
(ASE), pp. 452–463. IEEE (2015)

53. Nam, J., Kim, S.: Heterogeneous defect prediction. In: Proceedings of the 10th
Joint Meeting on Foundations of Software Engineering (FSE), pp. 508–519.
ACM (2015)

54. Nam, J., Pan, S.J., Kim, S.: Transfer defect learning. In: Proceedings of the 2013
International Conference on Software Engineering (ICSE), pp. 382–391. IEEE
Press (2013)

55. NASA: Metrics data program. http://openscience.us/repo/defect/

mccabehalsted/. [Online; accessed 1-September-2016]
56. Neumann, D.E.: An enhanced neural network technique for software risk analy-

sis. IEEE Transactions on Software Engineering (TSE) 28(9), 904–912 (2002)
57. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer

component analysis. IEEE Transactions on Neural Networks 22(2), 199–210
(2011)

58. Peters, F., Menzies, T., Gong, L., Zhang, H.: Balancing privacy and utility in
cross-company defect prediction. IEEE Transactions on Software Engineering
39(8), 1054–1068 (2013)

59. Petrić, J., Bowes, D., Hall, T., Christianson, B., Baddoo, N.: The jinx on the
NASA software defect data sets. In: Proceedings of the 20th International Con-
ference on Evaluation and Assessment in Software Engineering, pp. 1–5. ACM
(2016)

60. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers (1993)

61. Rathore, S.S., Gupta, A.: A comparative study of feature-ranking and feature-
subset selection techniques for improved fault prediction. In: Proceedings of the
7th India Software Engineering Conference, p. 7. ACM (2014)

38

http://openscience.us/repo/defect/mccabehalsted/
http://openscience.us/repo/defect/mccabehalsted/

The Impact of Feature Reduction Techniques on Defect Prediction Models 39

62. Ren, J., Qin, K., Ma, Y., Luo, G.: On software defect prediction using machine
learning. Journal of Applied Mathematics 2014 (2014). Art. ID 785435

63. Rodrı́guez, D., Ruiz, R., Cuadrado-Gallego, J., Aguilar-Ruiz, J.: Detecting fault
modules applying feature selection to classifiers. In: Proceedings of the 2007
International Conference on Information Reuse and Integration, pp. 667–672.
IEEE (2007)

64. Rodriguez, D., Ruiz, R., Cuadrado-Gallego, J., Aguilar-Ruiz, J., Garre, M.: At-
tribute selection in software engineering datasets for detecting fault modules. In:
Proceedings of the 2007 EUROMICRO Conference on Software Engineering
and Advanced Applications, pp. 418–423. IEEE (2007)

65. Rokach, L., Maimon, O.: Clustering methods. In: Data mining and knowledge
discovery handbook, pp. 321–352. Springer (2005)

66. Shepperd, M., Song, Q., Sun, Z., Mair, C.: Data quality: Some comments on the
NASA software defect datasets. IEEE Transactions on Software Engineering
(TSE) 39(9), 1208–1215 (2013)

67. Shihab, E.: Practical software quality prediction. In: Proceedings of the 2014
International Conference on Software Maintenance and Evolution (ICSME), pp.
639–644. IEEE (2014)

68. Shihab, E., Jiang, Z.M., Ibrahim, W.M., Adams, B., Hassan, A.E.: Understanding
the impact of code and process metrics on post-release defects: A case study on
the Eclipse project. In: Proceedings of the International Symposium on Empirical
Software Engineering and Measurement (ESEM), pp. 4:1–4:10. ACM (2010)

69. Shivaji, S., Whitehead, E.J., Akella, R., Kim, S.: Reducing features to improve
code change-based bug prediction. IEEE Transactions on Software Engineering
(TSE) 39(4), 552–569 (2013)

70. Smolensky, P.: Information processing in dynamical systems: Foundations of
harmony theory. Tech. rep., DTIC Document (1986)

71. Tantithamthavorn, C., Hassan, A.E.: An experience report on defect modelling
in practice: Pitfalls and challenges. In: Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Practice Track
(ICSE-SEIP), pp. 286–295. ACM (2018)

72. Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K.: Automated
parameter optimization of classification techniques for defect prediction models.
In: Proceedings of the 38th International Conference on Software Engineering
(ICSE), pp. 321–332. ACM (2016)

73. Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K.: An empirical
comparison of model validation techniques for defect prediction models. IEEE
Transactions on Software Engineering (TSE) 43(1), 1–18 (2017)

74. Tassey, G.: The economic impacts of inadequate infrastructure for software test-
ing. National Institute of Standards and Technology (2002)

75. Von Luxburg, U.: A tutorial on spectral clustering. Statistics and computing
17(4), 395–416 (2007)

76. Xu, Z., Liu, J., Yang, Z., An, G., Jia, X.: The impact of feature selection on
defect prediction performance: An empirical comparison. In: Proceedings of the
27th International Symposium on Software Reliability Engineering (ISSRE), pp.
309–320. IEEE (2016)

39

40 Kondo et al.

77. Yang, B., Yin, Q., Xu, S., Guo, P.: Software quality prediction using affinity
propagation algorithm. In: Proceedings of the International Joint Conference on
Neural Networks, pp. 1891–1896. IEEE (2008)

78. Zhang, F., Zheng, Q., Zou, Y., Hassan, A.E.: Cross-project defect prediction us-
ing a connectivity-based unsupervised classifier. In: Proceedings of the 38th
International Conference on Software Engineering (ICSE), pp. 309–320. ACM
(2016)

79. Zhang, H.: The optimality of Naive Bayes. In: FLAIRS Conference. AAAI Press
(2004)

80. Zhong, S., Khoshgoftaar, T.M., Seliya, N.: Unsupervised learning for expert-
based software quality estimation. In: HASE, pp. 149–155. Citeseer (2004)

81. Zimmermann, T., Nagappan, N., Gall, H., Giger, E., Murphy, B.: Cross-project
defect prediction: a large scale experiment on data vs. domain vs. process. In:
Proceedings of the the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Soft-
ware Engineering (ESEC-FSE), pp. 91–100. ACM (2009)

82. Zwillinger, D., Kokoska, S.: CRC standard probability and statistics tables and
formulae. Crc Press (1999)

40

	1 Introduction
	2 Related work
	3 Methodology
	4 Experimental setup
	5 Results
	6 Discussion: Which features are generated by the feature reduction techniques?
	7 Threats to validity
	8 Conclusion

