
Noname manuscript No.
(will be inserted by the editor)

The Impact of Context Metrics
on Just-In-Time Defect Prediction

Masanari Kondo · Daniel M. German · Osamu
Mizuno · Eun-Hye Choi ·

the date of receipt and acceptance should be inserted later

Abstract Traditional just-in-time defect prediction approaches have been using changed
lines of software to predict defective-changes in software development. However,
they disregard information around the changed lines. Our main hypothesis is that
such information has an impact on the likelihood that the change is defective. To take
advantage of this information in defect prediction, we consider n-lines (n = 1, 2, · · ·)
that precede and follow the changed lines (which we call context lines), and propose
metrics that measure them, which we call “Context Metrics.” Specifically, these con-
text metrics are defined as the number of words/keywords in the context lines. In a
large-scale empirical study using six open source software projects, we compare the
performance of using our context metrics, traditional code churn metrics (e.g., the
number of modified subsystems), our extended context metrics which measure not
only context lines but also changed lines, and combination metrics that use two ex-
tended context metrics at a prediction model for defect prediction. The results show
that context metrics that consider the context lines of added-lines achieve the best
median value in all cases in terms of a statistical test. Moreover, using few num-
ber of context lines is suitable for context metric that considers words, and using
more number of context lines is suitable for context metric that considers keywords.
Finally, the combination metrics of two extended context metrics significantly out-

Masanari Kondo, Osamu Mizuno
Software Engineering Laboratory (SEL)
Kyoto Institute of Technology, Japan
E-mail: m-kondo@se.is.kit.ac.jp, o-mizuno@kit.ac.jp

Daniel M. German
Department of Computer Science, University of Victoria,
Victoria, BC, Canada
E-mail: dmg@uvic.ca

Eun-Hye Choi
Information Technology Research Institute,
National Institute of Advanced Industrial Science and Technology, Japan
E-mail: e.choi@aist.go.jp

2 Kondo et al.

perform all studied metrics in all studied projects w. r. t. the area under the receiver
operation characteristic curve (AUC) and Matthews correlation coe�cient (MCC).

1 Introduction

Software developers have limited resources to verify and test their source code. If
developers can identify defective components (e.g., files or commits) they would be
able to focus their e↵ort on these components. Defect prediction supports this activity,
and prior work has reported that defect prediction can reduce development cost for
developers [58].

There exists plenty of work aimed at predicting defective components [2, 8, 16,
29, 38]. In particular, several prior research work has focused on predicting defective
changes called change-level defect prediction—also called just-in-time defect predic-
tion [10, 22, 27, 37]. Just-in-time defect prediction has the advantage that it can de-
termine if a commit is likely to be defective when the commit is being performed [17]
and providing faster feedback than other defect prediction methods [22]. Previous re-
search has used metrics based on measuring the code changes (e.g., churn–changed
lines) in just-in-time defect prediction [22, 27, 37].

To the best of our knowledge, no studies have considered using the information
in the lines that surround the changed lines of a commit, which we call context lines.
Our main hypothesis is that information in the context lines has an impact on the
likelihood that the change is defective. In this paper, we evaluate the use this infor-
mation in just-in-time defect prediction. The dictionary defines context as “the parts
of something written or spoken that immediately precede and follow a word or pas-
sage and clarify its meaning” [53]. In this paper, we define the context lines of a chunk
of changed lines as the n-lines (n = 1, 2, · · ·) that precede the chunk and the n-lines
that follow the chunk.

This paper proposes several context metrics. The di↵erent metrics vary around
three di↵erent axis: a) how many context lines around each change to use (the size of
the context, n), b) whether to use all context lines, or only those of added or removed
lines (the type of the change), and c) counting the number of words or counting the
number of keywords (as defined by the programming language) in the context. We
consider these axes as the parameters of context metrics. We refer to a context metric
which uses a set of the parameters as a variant of context metrics. We empirically
study the best-performing variant in terms of defect prediction performance. We also
compare the context metrics that are the best-performing variants with traditional
code churn metrics (change metrics [22, 27, 37] and indentation metrics [18]), ex-
tended context metrics and combination metrics that use two extended context met-
rics. Indentation metrics use the total number of white spaces in front of changed
lines, and the total number of pairs of braces that surrounded changed lines; we han-
dle indentation metrics as code churn metrics, since they are computed on changed
lines. In order to improve the predicting power of the context metrics in defect pre-
diction, we also define extended context metrics. Extended context metrics count the
number of words/keywords in both, the context lines and the changed lines. Hence,
extended context metrics are hybrids of the context metrics and traditional code churn

2

The Impact of Context Metrics on Just-In-Time Defect Prediction 3

metrics. In addition, we use combination metrics that use two extended context met-
rics that count (1) number of words and (2) number of a certain keyword (e.g., “goto”)
at a prediction model in order to improve the predicting power of the extended context
metrics in defect prediction.

Using six large open source software projects (from di↵erent domains) we em-
pirically evaluate the defect prediction power of context metrics and compare them
against traditional change metrics. This comparison is done using logistic regression
models and random forest models.

Specifically, we address the following three research questions:

RQ1: What is the impact of the di↵erent variants of context metrics on defect predic-
tion?

RQ2: Do context lines improve the performance of defect prediction?
RQ3: What is the impact of combination metrics of context metrics on defect predic-

tion?

The main findings of our paper are as follows:

– The best performing context metrics are the ones that measure the context of
added-lines only.

– The prediction power of context metrics varies when di↵erent sizes of the context
(number of lines around the change) are used. The optimal size of the context
for the metric that uses number of words is smaller than the optimal size for the
metric that uses keywords.

– The number of “goto” statements in context lines and changed lines is a good
indicator of defective commits.

– Our proposed combination metrics of extended context metrics significantly out-
perform all the metrics that are used in this paper, and achieve the best-performing
metrics in all of the studied projects in terms of 2 of the 3 evaluation measures
used (area under the receiver operation characteristic curve, and Matthews corre-
lation coe�cient).

This paper is organized as follows: Section 2 shows motivation example. Sec-
tion 3 introduces related work. Section 4 explains our proposed context metrics. Sec-
tion 5 presents our case study design. Section 6 describes research questions and
methodology. Section 7 presents the results of our case study. Section 8 discusses
the results. Section 9 describes the threats to the validity of our findings. Section 10
presents the conclusion.

2 Motivating Example

Let us start from a simple example to illustrate the use of context lines to measure the
complexity of changes. Figure 1 shows an example of two changed functions. The
context lines are lines that precede or follow the changed lines. In this example, the
underlined text represents the context lines and the bold lines are the changed lines.
The function shown in Figure 1(a) has simple context lines: there is one assignment
before the changed line and one empty line after the changed line. The changed in

3

4 Kondo et al.

int calculate(double value1, double value2){
 ...
 cons = 10;
 + sum = value1*value2 + cons;

 ...
}

(a) Simple context lines.

int calculate(double value1, double value2){
 ...
 if (sum > 10) {
 + sum = value1*value2 + cons;
 } else if (sum==10) { sum = cons;}
 ...
}

(b) Complex context lines.

Fig. 1: An example of two changed functions each of which has one changed line (in
this case, an added line, in bold). We call the lines that precede or follow the changed
lines context lines (in italic with an underline). Other lines except the context lines
are same in both functions.

Figure 1(b) has more complex context lines: the “if” and “else” statements. If we use
only the changed lines as an input to compute the complexity of the changes these
two changes have the same complexity. In contrast, if we use the context lines as a
measure of complexity, these two functions have a di↵erent complexity.

To the best of our knowledge, there exists no research work that studies the con-
text lines in defect prediction. In this paper, we introduce two types of new metrics
that use the context lines: context metrics and extended context metrics, and evaluate
their performance in defect prediction.

There are complexity metrics, such as Halstead’s complexity metrics [14] and
McCabe’s Cyclomatic complexity metrics [32], that can capture the complexity of the
function being changed and take into consideration the context; however, (1) to com-
pute these metrics we need all the lines of the functions, (2) these metrics are limited
because they require a parser, and (3) complexity metrics are not optimized for code
churn. In contrast, context metrics provide several advantages; first, they are easy to
compute (they only require the “di↵” and—in the case of number of keywords—a
list of keywords of the programming language as input) and they measure only the
complexity that surrounds the change instead of the entire function.

3 Related Work

3.1 Source Code Churn

Many researchers have studied source code churn for software defect, reliability and
quality [12, 22–25, 27, 37, 39–41, 43]. Source code churn measures changes and ex-
tensions of source code in a period of time [42]. Munson et al. [39] reported that,
as a system is developed (evolved), complexity of the system is also changed. They
proposed a methodology to produce an indicator of defects based on this tendency.
Nagappan et al. [40] predicted defect density between di↵erent releases of Windows
Server 2003. Comparing traditional code churn metrics with relative code churn met-

4

The Impact of Context Metrics on Just-In-Time Defect Prediction 5

rics, which relate proportion of code churn such as size of its component, they found
the relative code churn metrics are strong metrics for the defect density.

Prior studies proposed more complex code churn metrics [16, 18]. Hassan [16]
proposed code churn metrics based on the code change process. He applied Shannon
entropy (from information theory) to the code change process in order to formulate
his metrics.

Hindle et al. [18] proposed indentation metrics that measure the indentations of
added-lines and fixed-lines of changes. They studied the correlations between the
indentation metrics and traditional complexity metrics (McCabe’s Cyclomatic com-
plexity [32] and Halstead’s complexity [14]). They showed that the indentation met-
rics are mildly or strongly correlated with the traditional complexity metrics and the
indentation is potentially its own complexity metric [18]. Because indentation met-
rics use the information in changed or added lines, we refer to indentation metrics as a
type of code churn metric. This paper is the first study to investigate the e↵ectiveness
of indentation metrics for defect prediction.

In this paper, we compare the prediction power of 6 types of metrics in defect
prediction. These metrics are: 1) context metrics, 2) traditional code churn metrics
[22, 27, 37], 3) each of traditional code churn metrics, 4) code churn metrics based
on indentation metrics [18], 5) extended context metrics (which are combinations
between context metrics and a traditional code churn metric) and 6) combination
metrics of extended context metrics (which are two extended context metrics that are
(1) number of words and (2) number of a certain keyword at a prediction model).

3.2 Text-Based/Just-In-Time Defect Prediction

Many researchers have tackled the problem of defect prediction [1, 3, 20, 22, 27, 28,
31, 36, 52, 60, 61, 63]. In addition, several researchers have proposed metrics to pre-
dict defective components [2, 8, 16, 29, 38]. Mizuno et al. [36] applied spam filter to
defect prediction problem. Śliwerski et al. [52] proposed a method that automatically
identifies changes that lead to defects in the future.

Textual information has also being used for defect prediction [1, 27, 31, 36, 60].
Kim et al. [27] used not only metadata and complexity metrics but also text informa-
tion to build a prediction model and predicted defects. They used change-log mes-
sages, source code and file names as input to their predictors.

Wang et al. [60] used the programs’ Abstract Syntax Trees (ASTs) as a represen-
tation of source code. They applied a deep learning technique to ASTs in order to
learn semantic features from token vectors.

Several researchers have worked on just-in-time defect prediction [1, 10, 16, 20,
22, 27–29, 37, 61]. Just-in-time defect prediction aims at identifying defective code
changes, such as commits, instead of identifying defective files or packages as in tra-
ditional file/package-level defect prediction. For example, Kamei et al. [22] focused
on predicting the risk of commits. They used change metrics to predict defective
commits at the time of committing commits. Yang et al. [61] applied a deep learning
technique as a prediction model to change metrics and conducted just-in-time defect
prediction. Just-in-time defect prediction has the following three benefits that address

5

6 Kondo et al.

the challenges on file/package-level defect prediction [22]: (1) prediction targets are
fine-grained, (2) relevant-developers can be identified, and (3) the prediction-period
is faster. In this paper, we use context metrics for just-in-time defect prediction.

There are several widely known pitfalls that should be avoided in defect predic-
tion [54, 55]. For example, Tan et al. [54] reported that cross validation technique is
frequently used to evaluate prediction models [3, 20, 22, 27, 28]. However, this tech-
nique risks to mix past and future commits; an unrealistic scenario that artificially
improves results. In our study, we take into consideration their recommendations to
avoid these potential pitfalls. This technique called online change classification is a
validation technique without the risks. We describe the details in Section 5.4.

4 Context Metrics

In this section, we describe the implementation of the proposed context metrics. As
described in the previous sections, context information might be useful for defect pre-
diction since it provides a new perspective of changes. In addition, it is easy to obtain
context information (e.g., using the di↵ command in the version control system). For
example, for the changed function in Figure 1(b), we consider only the lines in italic
with an underline for context information.

Any modifications to a file can be described in terms of a unified di↵. A unified
di↵ is a sequence of hunks; each hunk is composed of one or more sequences of
contiguously changed lines. Each of these sequences is composed of ‘+’ lines (lines
added to the file) or ‘-’ lines (lines removed from the file). For the sake of simplicity,
we refer to these sequences of changed lines as chunks. We consider two types of
chunks: ‘+’ chunks (which contain at least one ‘+’ line), ‘-’ chunks (which contain
at least one ‘-’ line). Finally, we will refer to any chunks (including both ‘+’ and
‘-’ chunks) as ‘all’ chunks. Figure 2 shows an example of two unified di↵s (a part
of output by git show). The above unified di↵ is a sequence of two hunks that are
divided by the lines prefixed with @@, <2>. Each hunk has a chunk <3> and <4>,
respectively. The above chunk, <3>, is of type ‘+’ and ‘all’. The below chunk, <4>,
is of type ‘-’, and ‘all’. The below unified di↵ has a hunk. This hunk includes two
chunks that are type ‘+’ and ‘all’ 1.

Each chunk is surrounded by its context lines (the lines above and below the
chunk that indicate where the chunk is to be applied—prefixed with ‘ ’ in the hunk).
We refer to these context lines as the context of the chunk. We also consider as a part
of the context the full filename of the file being changed. This is because we consider
that the directories where the file is located can contribute to the complexity of the
context; i.e., more directories in the filename indicate a more complex context than
no-directories. We evaluated the use or the filename/directories in the context metrics
for their prediction power and found that when used, the performance of the context
metrics improved.

For explaining context metrics, we define the following terminology:

1 Note that a chunk is able to be of type ‘+’, ‘-’ and ‘all’ at once. In this case, a chunk includes at least
two lines that consist of at least one ‘+’ and ‘-’ line.

6

The Impact of Context Metrics on Just-In-Time Defect Prediction 7

chunk,
type ‘+’ and ‘all’

context
(d(f1,3),‘+’ and ‘all’)

chunk,
type ‘-’ and ‘all’

chunk,
type ‘+’ and ‘all’

chunk,
type ‘+’ and ‘all’

hunk
hunk

hunk

a unified diff d(f2,3)

filename

filename

f1 = ‘src/qt/Makefile.am’

f2 = ‘src/qt/rpcconsole.cpp’

a unified diff d(f1,3)
context

(d(f1,3),‘+’ and ‘all’)

D(c,3) = {d(f1,3), d(f2,3)}

context
(d(f1,3),‘-’ and ‘all’)

context
(d(f1,3),‘-’ and ‘all’)

context
(d(f2,3),‘+’ and ‘all’)

context
(d(f2,3),‘+’ and ‘all’)

context
(d(f2,3),‘+’ and ‘all’)

<1>

<2>

<3>

<2>

<4>

<2>

<3>

<3>

[Commit c: a92aded70ec2346c3f07ff1cf8eb97101a76912f]
git show a92aded70ec2346c3f07ff1cf8eb97101a76912f

diff --git a/src/qt/Makefile.am b/src/qt/Makefile.am
index 1d85113d7..d527f790e 100644
--- a/src/qt/Makefile.am
+++ b/src/qt/Makefile.am
@@ -276,6 +276,7 @@ BITCOIN_QT_CPP = \
 notificator.cpp \
 optionsdialog.cpp \
 optionsmodel.cpp \
+ peertablemodel.cpp \
 qvalidatedlineedit.cpp \
 qvaluecombobox.cpp \
 rpcconsole.cpp \
@@ -296,7 +297,6 @@ BITCOIN_QT_CPP += \
 overviewpage.cpp \
 paymentrequestplus.cpp \
 paymentserver.cpp \
- peertablemodel.cpp \
 receivecoinsdialog.cpp \
 receiverequestdialog.cpp \
 recentrequeststablemodel.cpp \
diff --git a/src/qt/rpcconsole.cpp b/src/qt/rpcconsole.cpp
index 6a8bce25d..0d3e11f4a 100644
--- a/src/qt/rpcconsole.cpp
+++ b/src/qt/rpcconsole.cpp
@@ -15,7 +15,9 @@
 #include "util.h"

 #include "json/json_spirit_value.h"
+#ifdef ENABLE_WALLET
 #include <db_cxx.h>
+#endif
 #include <openssl/crypto.h>

 #include <QKeyEvent>

Fig. 2: An example of unified di↵s of a commit with context size equal to three pro-
duced by git show (<1>) in Bitcoin project; due to the space limitation, we remove
the metadata of this commit (the commit comment and the author information). This
commit consists of two source code file di↵s. The above di↵ has two hunks (divided
by the lines prefixed with @@, <2>). Each of both hunks consists of only one chunk
(sequence of changed lines). The first chunk is of type ‘+’ and ‘all’. The second one
is of type ‘-’, and ‘all’. The below di↵ has a hunk. This hunk consists of two chunks.
Each of both chunks is of type ‘+’ and ‘all’. The context lines of each chunk are the
above and below the corresponding chunk (above and below of <3> and <4>). The
filename is prefixed with ‘+++ b/’.

7

8 Kondo et al.

Table 1: Types of contexts. The context of chunk type t of a unified di↵ d(f , n) is the
concatenation of the full filename of f and the contexts of the chunk type t in the di↵
d(f , n).

Types of contexts Definition

context(d(f , n), all) Context of all chunks in di↵ d(f , n)
context(d(f , n), +) Context of all chunks in di↵ d(f , n) that contain at least one ‘+’ line
context(d(f , n), -) Context of all chunks in di↵ d(f , n) that contain at least one ‘-’ line

– c: a commit.
– n: a context size that is the maximum number of lines that can precede or follow

a chunk we consider. (This is also a parameter of the di↵ command in the version
control system.)

– d(f , n): a unified di↵ of a changed file f with context size n.
– D(c, n): a set of d(f , n) for all the changed files in commit c.

For a given unified di↵ d(f , n), we define the three types of contexts, based on the
three chunk types, with the following notation (refer to Table 1):

– context(d(f , n), t): the concatenation of the full filename of f and the context of
all chunks of chunk type t in di↵ d(f , n).

For a unified di↵ d(f , n), we define the following two notations:

1. ncw(d(f , n), t): the number of words in context(d(f , n), t).
2. nckw(d(f , n), t): the number of programming language keywords (Table 2 shows

all studied keywords)2 in context(d(f , n), t).

Given a commit c, a context size (the number of context lines) n, and the chunk type
t, we define the following two kinds of context metrics:

NCW (c, n, t) =
X

d(f ,n)2D(c,n)

ncw(d(f , n), t),

NCKW (c, n, t) =
X

d(f ,n)2D(c,n)

nckw(d(f , n), t).

The defined context metrics are described in Table 3. To compute the context metrics
of a commit m(c, n, t) —where m is either NCW or NCKW, c is a commit id, n is the
number of context lines, and t is the chunk type—we use the following algorithm:

1. Compute the di↵s D(c, n) of the source code files3 of commit c with the given
number of lines of context, n, using the following command:
git show --unified=n c

2 The keywords refer to reserved words (statements) in C++ that are shown by Microsoft Visual Stu-
dio [35]. Because the reserved words of C++ and Java are almost the same, we use the keywords for
the projects in Java. We separate the reserved words that include underscores. For instance, we convert
“ if exists” into “if” and “exists”.

3 Here, a source file is a file with the name ending in java, c, h, cpp, hpp, cxx, or hxx, since we analyze
both C++ and Java.

8

The Impact of Context Metrics on Just-In-Time Defect Prediction 9

Table 2: Studied programming language keywords.

break case catch continue default
do else except for goto
finally if exists not leave
return switch throw try while

Table 3: Di↵erent context metrics. “Keywords” refers to the keywords defined in
the programming language of the source code. c denotes a commit id, n denotes the
context size (size of the context of the di↵), and t is either of ‘all’, ‘+’ or ‘-’.

Metrics Description

NCW(c, n, t) Sum of the number of words in the contexts of all
chunks of chunk type t.

NCKW(c, n, t) Sum of the number of programming language key-
words in the contexts of all chunks of chunk type t.

2. For each di↵ d(f , n) of a source code file, compute ncw(d(f , n), t) or nckw(d(f , n), t):
(a) Remove all chunks that are not of chunk type t, including their contexts.
(b) Remove comments.
(c) Create a string st with the concatenation of

– the full filename of the di↵ d(f , n), and
– the contexts around the identified chunks.

(d) Use lscp4 [59] to convert st into a sequence of words. For ncw, count the
number of words in this sequence; for nckw, count the number of program-
ming language keywords in st.

3. Finally, the context metric NCW/NCKW of the commit is calculated as the sum
of values of ncw/nckw for all di↵s of the source code files in the commit.

Figure 3 depicts an example showing how the context metrics are computed from
a unified di↵. The left square corresponds to the first step in our algorithm. (1) and
(2) are corresponding to the second step; we have removed unrelated code in (1), and
convert the string into a sequence of words by lscp in (2). (3) is corresponding to the
step three; we compute the context metrics.

The intuition behind counting words or keywords:
Our definition of context metrics involves counting words or keywords in the

context of a change. We consider that a context with more words is likely to be more
complex than a context that has less words. Hence, we consider that counting the
number of words in the context of a change is a proxy of the complexity of such
change.

The main intuition behind using the number of keywords is that the number of
keywords in the context might indicate how deeply nested change is. Therefore, a
change with a larger number of keywords is likely to more complex that a change
that has fewer (or no) keywords around it.

4 https://github.com/doofuslarge/lscp. lscp separates complex identifiers into its component words —
e.g., converts GetBoolArg into Get, Bool, Arg).

9

10 Kondo et al.

$ git show commit_hash —unified=1
commit commit_hash
Author: author_name <author_email>
Date: date_of_this_commit

 commit comment

diff --git a/src/qt/rpcconsole.cpp b/src/qt/rpcconsole.cpp
index 6a8bce25d..0d3e11f4a 100644
--- a/src/qt/rpcconsole.cpp
+++ b/src/qt/rpcconsole.cpp
@@ -17,3 +17,5 @@
 #include "json/json_spirit_value.h"
+#ifdef ENABLE_WALLET
 #include <db_cxx.h>
+#endif
 #include <openssl/crypto.h>
$

 src/qt/rpcconsole.cpp
#include "json/json_spirit_value.h"
 #include <db_cxx.h>
 #include <openssl/crypto.h>

src qt rpcconsole cpp include json
json spirit value include db cxx
include openssl crypto

NCW = 15, NCKW = 0

(1)

(2)

(3)

Fig. 3: Example showing how NCW and NCKW are computed from a unified di↵.
The unified di↵ corresponds to the change from Figure 2; due to the space limita-
tion, we remove several hunks, the commit comment, the author information, and the
commit hash from the unified di↵. The number of context lines n is 1. The chunk
type t is ‘+’. The commit hash c is ‘commit hash.’ The changed file f is ‘src/qt/rpc-
console.cpp.’ The left square corresponds to the first step in our algorithm. (1) and (2)
are corresponding to the second step; we remove unrelated code in (1), and convert
the string into a sequence of words by lscp in (2). (3) is corresponding to the step
three; we compute the context metrics.

Finally, counting number of words/keywords is easy to compute in practice.

5 Case Study Design

In this section, we discuss our selection criteria for the studied indentation metrics,
data, validation technique, preprocessing, projects, resampling approach, evaluation
measures, and prediction models.

5.1 Indentation Metrics

We compare context metrics with indentation metrics. We study two indentations
metrics: Added Spaces (AS), defined by Hindle et.al [18]; AS is the sum of the number
of white spaces on all the ‘+’ lines in a commit.

We additionally define a new indentation metric Added Braces (AB). We consider
the number of braces as a logical indentation because the number of braces in C++
and Java expresses how embedded one block of code is inside others. We first count
the number of left-braces Bleft and right-braces Bright from the head of a function to
each ‘+’ line, respectively. Second, we compute the di↵erence Bdi↵ between Bleft and
Bright on each ‘+’ line. Finally, we sum Bdi↵ for all ‘+’ lines in a commit.

The intuition of using the indentation metrics as way to predict defects:

10

The Impact of Context Metrics on Just-In-Time Defect Prediction 11

Table 4: Change metrics.

Dim. Name Definition
D

i↵
us

io
n NS Number of modified subsystems

ND Number of modified directories
NF Number of modified files
Entropy Distribution of modified code across each file

Si
ze

LA Lines of code added
LD Lines of code deleted
LT Lines of code in a file before the change

Pu
rp

os
e FIX Whether or not the change is a defect fix

H
is

to
ry NDEV The number of developers that changed the modified files

AGE The average time interval between the last and the current change
NUC The number of unique changes to the modified files

Ex
pe

rie
nc

e EXP Developer experience
REXP Recent developer experience
SEXP Developer experience on a subsystem

The indentation metrics have been used as a proxy to measure complexity of
source code [18]. However, they have not been used in defect prediction. The ratio-
nale behind their use in defect prediction is that modifications in more indented code
are likely to be more complex that modifications that happen in less indented code
because the person doing the changes not only has to be concerned with what the
code does, but also with the code that surrounds it. The code with the larger indenta-
tion is likely to be inside more control blocks–e.g., while, for, and if statements–than
the code with the less indentation; we hypothesize that more control blocks might
create more brittle code. Hence, all things equal, we expect that changes to code that
has more indentation might result in more defects that changes to code that has less
indentation.

5.2 Preparing Data using Commit Guru

The availability and openness of experimental data is a real challenge to evaluate de-
fect prediction approaches. Therefore, we use data provided by Commit Guru, which
Rosen et al. [47] provide publicly. Commit Guru is a web application, which iden-
tifies and predicts defective commits for Git repositories and calculates the change
metrics (Table 4) that are often used for just-in-time defect prediction [22].

In this paper, we use Commit Guru to calculate the change metrics [22]. We use
the change metrics in RQ2 to compare with the context metrics in order to study what
is the impact of the context metrics on defect prediction. Then, we use the change
metrics, and their subsets (each of the change metrics) as studied metrics.

We refer to each metric in the change metrics as a subset of the change metrics.
When using a subset of the change metrics, we pick up a metric from the change

11

12 Kondo et al.

… …

Training interval Tr
<latexit sha1_base64="ipYNGUoyQZVXRUtSrnAzoMnW0Mc=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWOVxhbaUDbbTbt0swm7E6GE/gMvHlS8+pO8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+Hoduq3nrg2IlFNHKc8iOlAiUgwilZ6aOpeperW3BnIMvEKUoUCjV7lq9tPWBZzhUxSYzqem2KQU42CST4pdzPDU8pGdMA7lioacxPks0sn5NQqfRIl2pZCMlN/T+Q0NmYch7Yzpjg0i95U/M/rZBhdBblQaYZcsfmiKJMEEzJ9m/SF5gzl2BLKtLC3EjakmjK04ZRtCN7iy8vEP69d17z7i2r9pkijBMdwAmfgwSXU4Q4a4AODCJ7hFd6ckfPivDsf89YVp5g5gj9wPn8A78CNKA==</latexit><latexit sha1_base64="ipYNGUoyQZVXRUtSrnAzoMnW0Mc=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWOVxhbaUDbbTbt0swm7E6GE/gMvHlS8+pO8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+Hoduq3nrg2IlFNHKc8iOlAiUgwilZ6aOpeperW3BnIMvEKUoUCjV7lq9tPWBZzhUxSYzqem2KQU42CST4pdzPDU8pGdMA7lioacxPks0sn5NQqfRIl2pZCMlN/T+Q0NmYch7Yzpjg0i95U/M/rZBhdBblQaYZcsfmiKJMEEzJ9m/SF5gzl2BLKtLC3EjakmjK04ZRtCN7iy8vEP69d17z7i2r9pkijBMdwAmfgwSXU4Q4a4AODCJ7hFd6ckfPivDsf89YVp5g5gj9wPn8A78CNKA==</latexit><latexit sha1_base64="ipYNGUoyQZVXRUtSrnAzoMnW0Mc=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWOVxhbaUDbbTbt0swm7E6GE/gMvHlS8+pO8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+Hoduq3nrg2IlFNHKc8iOlAiUgwilZ6aOpeperW3BnIMvEKUoUCjV7lq9tPWBZzhUxSYzqem2KQU42CST4pdzPDU8pGdMA7lioacxPks0sn5NQqfRIl2pZCMlN/T+Q0NmYch7Yzpjg0i95U/M/rZBhdBblQaYZcsfmiKJMEEzJ9m/SF5gzl2BLKtLC3EjakmjK04ZRtCN7iy8vEP69d17z7i2r9pkijBMdwAmfgwSXU4Q4a4AODCJ7hFd6ckfPivDsf89YVp5g5gj9wPn8A78CNKA==</latexit><latexit sha1_base64="ipYNGUoyQZVXRUtSrnAzoMnW0Mc=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWOVxhbaUDbbTbt0swm7E6GE/gMvHlS8+pO8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+Hoduq3nrg2IlFNHKc8iOlAiUgwilZ6aOpeperW3BnIMvEKUoUCjV7lq9tPWBZzhUxSYzqem2KQU42CST4pdzPDU8pGdMA7lioacxPks0sn5NQqfRIl2pZCMlN/T+Q0NmYch7Yzpjg0i95U/M/rZBhdBblQaYZcsfmiKJMEEzJ9m/SF5gzl2BLKtLC3EjakmjK04ZRtCN7iy8vEP69d17z7i2r9pkijBMdwAmfgwSXU4Q4a4AODCJ7hFd6ckfPivDsf89YVp5g5gj9wPn8A78CNKA==</latexit>

Test interval Te
<latexit sha1_base64="YZScjqaBPGN3eNZ5UHmorxNBz+4=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWOVxhbaUDbbSbt0swm7G6GE/gMvHlS8+pO8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE9k04xSDmA4kjzijxkoPTexVqm7NnYEsE68gVSjQ6FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPLp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqKrIOcyzQxKNl8UZYKYhEzfJn2ukBkxtoQyxe2thA2poszYcMo2BG/x5WXin9eua979RbV+U6RRgmM4gTPw4BLqcAcN8IFBBM/wCm/OyHlx3p2PeeuKU8wcwR84nz/cGY0b</latexit><latexit sha1_base64="YZScjqaBPGN3eNZ5UHmorxNBz+4=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWOVxhbaUDbbSbt0swm7G6GE/gMvHlS8+pO8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE9k04xSDmA4kjzijxkoPTexVqm7NnYEsE68gVSjQ6FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPLp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqKrIOcyzQxKNl8UZYKYhEzfJn2ukBkxtoQyxe2thA2poszYcMo2BG/x5WXin9eua979RbV+U6RRgmM4gTPw4BLqcAcN8IFBBM/wCm/OyHlx3p2PeeuKU8wcwR84nz/cGY0b</latexit><latexit sha1_base64="YZScjqaBPGN3eNZ5UHmorxNBz+4=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWOVxhbaUDbbSbt0swm7G6GE/gMvHlS8+pO8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE9k04xSDmA4kjzijxkoPTexVqm7NnYEsE68gVSjQ6FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPLp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqKrIOcyzQxKNl8UZYKYhEzfJn2ukBkxtoQyxe2thA2poszYcMo2BG/x5WXin9eua979RbV+U6RRgmM4gTPw4BLqcAcN8IFBBM/wCm/OyHlx3p2PeeuKU8wcwR84nz/cGY0b</latexit><latexit sha1_base64="YZScjqaBPGN3eNZ5UHmorxNBz+4=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWOVxhbaUDbbSbt0swm7G6GE/gMvHlS8+pO8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE9k04xSDmA4kjzijxkoPTexVqm7NnYEsE68gVSjQ6FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPLp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqKrIOcyzQxKNl8UZYKYhEzfJn2ukBkxtoQyxe2thA2poszYcMo2BG/x5WXin9eua979RbV+U6RRgmM4gTPw4BLqcAcN8IFBBM/wCm/OyHlx3p2PeeuKU8wcwR84nz/cGY0b</latexit>

t � Tr
<latexit sha1_base64="FfJ4b+NSWPzB4mDzU9IjebwYjQM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorevFYobGFNpTNdtMu3d2E3Y1QQv+CFw8qXv1F3vw3btMctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHjzpOFaE+iXmsuiHWlDNJfcMMp91EUSxCTjvh5G7ud56o0iyWbTNNaCDwSLKIEWxy6aKtBtWaW3dzoFXiFaQGBVqD6ld/GJNUUGkIx1r3PDcxQYaVYYTTWaWfappgMsEj2rNUYkF1kOW3ztCZVYYoipUtaVCu/p7IsNB6KkLbKbAZ62VvLv7n9VITXQcZk0lqqCSLRVHKkYnR/HE0ZIoSw6eWYKKYvRWRMVaYGBtPxYbgLb+8SvzL+k3de2jUmrdFGmU4gVM4Bw+uoAn30AIfCIzhGV7hzRHOi/PufCxaS04xcwx/4Hz+AC7Djd0=</latexit><latexit sha1_base64="FfJ4b+NSWPzB4mDzU9IjebwYjQM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorevFYobGFNpTNdtMu3d2E3Y1QQv+CFw8qXv1F3vw3btMctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHjzpOFaE+iXmsuiHWlDNJfcMMp91EUSxCTjvh5G7ud56o0iyWbTNNaCDwSLKIEWxy6aKtBtWaW3dzoFXiFaQGBVqD6ld/GJNUUGkIx1r3PDcxQYaVYYTTWaWfappgMsEj2rNUYkF1kOW3ztCZVYYoipUtaVCu/p7IsNB6KkLbKbAZ62VvLv7n9VITXQcZk0lqqCSLRVHKkYnR/HE0ZIoSw6eWYKKYvRWRMVaYGBtPxYbgLb+8SvzL+k3de2jUmrdFGmU4gVM4Bw+uoAn30AIfCIzhGV7hzRHOi/PufCxaS04xcwx/4Hz+AC7Djd0=</latexit><latexit sha1_base64="FfJ4b+NSWPzB4mDzU9IjebwYjQM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorevFYobGFNpTNdtMu3d2E3Y1QQv+CFw8qXv1F3vw3btMctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHjzpOFaE+iXmsuiHWlDNJfcMMp91EUSxCTjvh5G7ud56o0iyWbTNNaCDwSLKIEWxy6aKtBtWaW3dzoFXiFaQGBVqD6ld/GJNUUGkIx1r3PDcxQYaVYYTTWaWfappgMsEj2rNUYkF1kOW3ztCZVYYoipUtaVCu/p7IsNB6KkLbKbAZ62VvLv7n9VITXQcZk0lqqCSLRVHKkYnR/HE0ZIoSw6eWYKKYvRWRMVaYGBtPxYbgLb+8SvzL+k3de2jUmrdFGmU4gVM4Bw+uoAn30AIfCIzhGV7hzRHOi/PufCxaS04xcwx/4Hz+AC7Djd0=</latexit><latexit sha1_base64="FfJ4b+NSWPzB4mDzU9IjebwYjQM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorevFYobGFNpTNdtMu3d2E3Y1QQv+CFw8qXv1F3vw3btMctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHjzpOFaE+iXmsuiHWlDNJfcMMp91EUSxCTjvh5G7ud56o0iyWbTNNaCDwSLKIEWxy6aKtBtWaW3dzoFXiFaQGBVqD6ld/GJNUUGkIx1r3PDcxQYaVYYTTWaWfappgMsEj2rNUYkF1kOW3ztCZVYYoipUtaVCu/p7IsNB6KkLbKbAZ62VvLv7n9VITXQcZk0lqqCSLRVHKkYnR/HE0ZIoSw6eWYKKYvRWRMVaYGBtPxYbgLb+8SvzL+k3de2jUmrdFGmU4gVM4Bw+uoAn30AIfCIzhGV7hzRHOi/PufCxaS04xcwx/4Hz+AC7Djd0=</latexit>

t
<latexit sha1_base64="l+MdhfFlEjVcYqVUvKQQvZBwXVY=">AAAB53icbVBNS8NAEN34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7E6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTJJpDj5PZKLbITMghQIfBUpopxpYHEpohaPbqd96Am1Eou5xnEIQs4ESkeAMrdTEXqXq1twZ6DLxClIlBRq9yle3n/AsBoVcMmM6nptikDONgkuYlLuZgZTxERtAx1LFYjBBPjt0Qk+t0qdRom0ppDP190TOYmPGcWg7Y4ZDs+hNxf+8TobRVZALlWYIis8XRZmkmNDp17QvNHCUY0sY18LeSvmQacbRZlO2IXiLLy8T/7x2XfOaF9X6TZFGiRyTE3JGPHJJ6uSONIhPOAHyTF7Jm/PovDjvzse8dcUpZo7IHzifP06TjMw=</latexit><latexit sha1_base64="l+MdhfFlEjVcYqVUvKQQvZBwXVY=">AAAB53icbVBNS8NAEN34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7E6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTJJpDj5PZKLbITMghQIfBUpopxpYHEpohaPbqd96Am1Eou5xnEIQs4ESkeAMrdTEXqXq1twZ6DLxClIlBRq9yle3n/AsBoVcMmM6nptikDONgkuYlLuZgZTxERtAx1LFYjBBPjt0Qk+t0qdRom0ppDP190TOYmPGcWg7Y4ZDs+hNxf+8TobRVZALlWYIis8XRZmkmNDp17QvNHCUY0sY18LeSvmQacbRZlO2IXiLLy8T/7x2XfOaF9X6TZFGiRyTE3JGPHJJ6uSONIhPOAHyTF7Jm/PovDjvzse8dcUpZo7IHzifP06TjMw=</latexit><latexit sha1_base64="l+MdhfFlEjVcYqVUvKQQvZBwXVY=">AAAB53icbVBNS8NAEN34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7E6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTJJpDj5PZKLbITMghQIfBUpopxpYHEpohaPbqd96Am1Eou5xnEIQs4ESkeAMrdTEXqXq1twZ6DLxClIlBRq9yle3n/AsBoVcMmM6nptikDONgkuYlLuZgZTxERtAx1LFYjBBPjt0Qk+t0qdRom0ppDP190TOYmPGcWg7Y4ZDs+hNxf+8TobRVZALlWYIis8XRZmkmNDp17QvNHCUY0sY18LeSvmQacbRZlO2IXiLLy8T/7x2XfOaF9X6TZFGiRyTE3JGPHJJ6uSONIhPOAHyTF7Jm/PovDjvzse8dcUpZo7IHzifP06TjMw=</latexit><latexit sha1_base64="l+MdhfFlEjVcYqVUvKQQvZBwXVY=">AAAB53icbVBNS8NAEN34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7E6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTJJpDj5PZKLbITMghQIfBUpopxpYHEpohaPbqd96Am1Eou5xnEIQs4ESkeAMrdTEXqXq1twZ6DLxClIlBRq9yle3n/AsBoVcMmM6nptikDONgkuYlLuZgZTxERtAx1LFYjBBPjt0Qk+t0qdRom0ppDP190TOYmPGcWg7Y4ZDs+hNxf+8TobRVZALlWYIis8XRZmkmNDp17QvNHCUY0sY18LeSvmQacbRZlO2IXiLLy8T/7x2XfOaF9X6TZFGiRyTE3JGPHJJ6uSONIhPOAHyTF7Jm/PovDjvzse8dcUpZo7IHzifP06TjMw=</latexit>

t + Te
<latexit sha1_base64="FzEoqGqP3DSI3Jay47oNM6SCK8A=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSIIQklEUG9FLx4rNLbQhrLZTtqlu0nY3Qil9C948aDi1V/kzX/jNs1BWx8MPN6bYWZemAqujet+Oyura+sbm6Wt8vbO7t5+5eDwUSeZYuizRCSqHVKNgsfoG24EtlOFVIYCW+Hobua3nlBpnsRNM04xkHQQ84gzanLpvIm9StWtuTnIMvEKUoUCjV7lq9tPWCYxNkxQrTuem5pgQpXhTOC03M00ppSN6AA7lsZUog4m+a1TcmqVPokSZSs2JFd/T0yo1HosQ9spqRnqRW8m/ud1MhNdBxMep5nBmM0XRZkgJiGzx0mfK2RGjC2hTHF7K2FDqigzNp6yDcFbfHmZ+Be1m5r3cFmt3xZplOAYTuAMPLiCOtxDA3xgMIRneIU3RzovzrvzMW9dcYqZI/gD5/MHGBKNzg==</latexit><latexit sha1_base64="FzEoqGqP3DSI3Jay47oNM6SCK8A=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSIIQklEUG9FLx4rNLbQhrLZTtqlu0nY3Qil9C948aDi1V/kzX/jNs1BWx8MPN6bYWZemAqujet+Oyura+sbm6Wt8vbO7t5+5eDwUSeZYuizRCSqHVKNgsfoG24EtlOFVIYCW+Hobua3nlBpnsRNM04xkHQQ84gzanLpvIm9StWtuTnIMvEKUoUCjV7lq9tPWCYxNkxQrTuem5pgQpXhTOC03M00ppSN6AA7lsZUog4m+a1TcmqVPokSZSs2JFd/T0yo1HosQ9spqRnqRW8m/ud1MhNdBxMep5nBmM0XRZkgJiGzx0mfK2RGjC2hTHF7K2FDqigzNp6yDcFbfHmZ+Be1m5r3cFmt3xZplOAYTuAMPLiCOtxDA3xgMIRneIU3RzovzrvzMW9dcYqZI/gD5/MHGBKNzg==</latexit><latexit sha1_base64="FzEoqGqP3DSI3Jay47oNM6SCK8A=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSIIQklEUG9FLx4rNLbQhrLZTtqlu0nY3Qil9C948aDi1V/kzX/jNs1BWx8MPN6bYWZemAqujet+Oyura+sbm6Wt8vbO7t5+5eDwUSeZYuizRCSqHVKNgsfoG24EtlOFVIYCW+Hobua3nlBpnsRNM04xkHQQ84gzanLpvIm9StWtuTnIMvEKUoUCjV7lq9tPWCYxNkxQrTuem5pgQpXhTOC03M00ppSN6AA7lsZUog4m+a1TcmqVPokSZSs2JFd/T0yo1HosQ9spqRnqRW8m/ud1MhNdBxMep5nBmM0XRZkgJiGzx0mfK2RGjC2hTHF7K2FDqigzNp6yDcFbfHmZ+Be1m5r3cFmt3xZplOAYTuAMPLiCOtxDA3xgMIRneIU3RzovzrvzMW9dcYqZI/gD5/MHGBKNzg==</latexit><latexit sha1_base64="FzEoqGqP3DSI3Jay47oNM6SCK8A=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSIIQklEUG9FLx4rNLbQhrLZTtqlu0nY3Qil9C948aDi1V/kzX/jNs1BWx8MPN6bYWZemAqujet+Oyura+sbm6Wt8vbO7t5+5eDwUSeZYuizRCSqHVKNgsfoG24EtlOFVIYCW+Hobua3nlBpnsRNM04xkHQQ84gzanLpvIm9StWtuTnIMvEKUoUCjV7lq9tPWCYxNkxQrTuem5pgQpXhTOC03M00ppSN6AA7lsZUog4m+a1TcmqVPokSZSs2JFd/T0yo1HosQ9spqRnqRW8m/ud1MhNdBxMep5nBmM0XRZkgJiGzx0mfK2RGjC2hTHF7K2FDqigzNp6yDcFbfHmZ+Be1m5r3cFmt3xZplOAYTuAMPLiCOtxDA3xgMIRneIU3RzovzrvzMW9dcYqZI/gD5/MHGBKNzg==</latexit>

Time

Fix Fix Fix

Fig. 4: An example of the time sensitive change classification. The cross in gray
indicates the information of fixing a commit is not used in the training interval.

metrics, and use that metric for defect prediction. This is because each of the change
metrics is also a churn metric. However, several metrics do not strongly relate to code
churn. For example, Purpose metric (i.e., FIX, described in Table 4) is not a↵ected
by code churn. Hence, we remove three types of metrics from all the change metrics
when considering their subsets that are Purpose metric (i.e., FIX), History metrics
(i.e., NDEV, AGE, and NUC), and Experience metrics (i.e., EXP, REXP and SEXP).
Hence we use each of NS, ND, NF, Entropy, LA, LD, and LT as a subset of the change
metrics. We apply z-score to each of the subsets to normalized to a mean of 0 and a
variance of 1.

When using the change metrics, to avoid using several strongly correlated met-
rics in the prediction, we apply the following preprocessing proposed and described
in [22]:

– Exclude ND and REXP since they are strongly correlated with NF and EXP.
– LA and LD are divided by LT to normalize LA and LD.
– LT and NUC are divided by NF to normalize LT and NUC.

Finally, we apply z-score [62] to the changed metrics to normalized to a mean of 0
and a variance of 1.

5.3 Time Sensitive Change Classification

Because we could use future commits to predict past commits, using 10-fold cross
validation has a risk to make the artificially good results such as high precision and
recall while studying just-in-time defect prediction [54]. In addition, while using 10-
fold cross validation, we label the commits in training data as defective or not using
all the commits information. However, this procedure also risks to use future infor-
mation for prediction. To address these two issues and validate our experiments, we
use time sensitive change classification [54].

Time sensitive change classification uses only past commits to label past commits
and build prediction models for future commits. Figure 4 shows an example of the
time sensitive change classification that uses the training interval between t�Tr and t
as training data and the test interval between t and t+Te as test data. In this example,
we use the commits in the training data to label its commits and build prediction
models for predicting commits in the test data.

12

The Impact of Context Metrics on Just-In-Time Defect Prediction 13

Online change classification Training interval
Gap
Test interval (Unit) (30)

Start gap
End gap
(Gap + 365)

Project
History

NewOld

Analysis
period

Margin

(analysis period/2) - gap

First iteration

Start date End date

Second iteration

Slide the training interval, test
interval and gap into the future

A unit (test interval)

History

Fig. 5: An overview of the online change classification. We show two iterations as
an example. The part of the rectangle in black is the training data (training interval)
labeled using the commits in the training interval and gap (in dark gray). The part
of the rectangle in light gray is the test data (test interval) labeled using all of the
commits in the project history including the end gap. Details of the terms in this
figure are described in Section 5.4.

However, Tan et al. [54] reported three challenges. First, because defective com-
mits are typically detected and fixed in 100–300 days [26], many undetected defec-
tive commits in the training interval would be labeled clean. Second, this validation
is sensitive to the interval. For example, if the training interval is before the release
day, features in the test interval would be di↵erent with the training interval. Third,
if we take a long time gap between the training interval and the test interval, features
such as developers and programming styles might have changed between the train-
ing interval and the test interval. To address these three challenges, Tan et al. [54]
recommended to use online change classification.

5.4 Online Change Classification

Online change classification is a validation technique. We describe the online change
classification, and how this validation technique addresses these three challenges.
To address the first challenge, a gap is used between the training interval and the
test interval (Figure 5). The gap is used only during the labeling of the commits in
the training interval. This additional interval allows more time to detect defective
commits in the training interval and make labeling result more precise. Typically, the
gap is the average or medium time between a defect inducing commit and a defect
fixing commit; in our experiments, we use median time for each project from our
pre-experiment (Table 5).

To address the second and third challenges, the time sensitive change classifica-
tion is executed multiple times while updating the training interval, test interval and
gap. The multiple execution minimizes the bias from a certain test interval. The train-

13

14 Kondo et al.

Table 5: Parameter values of the online change classification for each project (days).

Project Start gap End gap Gap Unit (test Training Iteration
interval) interval step size

Hadoop 925 526 151 30 510 17
Camel 743 416 40 30 1,110 37
Gerrit 375 523 137 30 900 30
Osmand 1,011 413 17 30 420 14
Bitcoin 789 459 77 30 600 20
Gimp 2,004 687 281 30 2,100 70

ing interval, test interval and gap slide into the future by a certain interval (Figure 5).
This certain interval is called unit. A unit is 30 days (one month) in our experiments.
The test interval is 30 days as well. Note that the unit and the test interval are pa-
rameters, hence; di↵erent parameter values might have the impact to the result of our
experiments. We studied this point in Section 9. The result shows that these parame-
ters have little impact for the results of our experiments.

We also use start gap and end gap [54] that are intervals that we do not use as
training interval and test interval. The beginning of a software project history may
be inconsistent and unstable. The end of a software project history would be labeled
clean because defective commits would not be detected. Hence, the start gap and end
gap would support building better prediction models and improving the quality of the
analysis.

Table 5 shows the actual parameters for each project. We manually look at the
number of commits and decide on the start date at a point after the number of com-
mitted commits increases and decreases moderately (reach a peak). The start gap is
the interval between the first commit date and the start date. The reason why we use
this process is that after the number of committed commits increases and decreases
moderately, the project would have been released and would be in a stable state.

To decide the end gap, we need to compute the analysis period, iteration step size
and training interval. In the following, analysis period is the maximum studied days.
We define the analysis period, iteration step size and the training interval as follows:

analysis period = (CommDatelatest � start date) � margin,

iteration step size = (analysis period/2 � gap)/unit,

Tr = iteration step size · unit,

where (and hereafter)

– CommDatelatest is the latest commit date,
– margin is a margin to remove defective commits that may not be detected yet, and
– Tr is the training interval.

We first compute the interval between the start date and the date that is margin
days before the latest commit date. This process removes the defective commits
that are not detected. We use 365 as the margin to compute the end gap. Hence,
the end gap is always 365 and over. Because we use unit as a test interval as well,

14

The Impact of Context Metrics on Just-In-Time Defect Prediction 15

Table 6: Details of the studied projects. Defective rate refer to the commits labeled
using all commits.

Project Language Total Number of Commits Defective Rate

Hadoop Java 13,920 24.8 %
Camel Java 24,740 23.2 %
Gerrit Java 18,794 20.1 %

Osmand Java 31,366 14.0 %
Bitcoin C++ 11,093 14.4 %
Gimp C++ 37,149 22.5 %

iteration step size shows that the rest of iterations that we can slide the training inter-
val, test interval and gap into the future as avoiding to use the commits that are com-
mitted in the latest margin days. In addition, we use gap to compute iteration step size.
This additional gap avoids the commits that are in the latest margin days plus the gap
days and ensure that we consider enough commits to label the commits in the test
interval. The training interval is decided by iteration step size and unit. Finally, we
define the end date and the end gap as follows:

end date = start date + (Tr + gap + (iteration step size · unit)),

end gap = CommDatelatest � end date.

For labeling commits either defective or clean, we follow the labeling process
used by Commit Guru:

1. Collect commits cfix whose messages contain specific keywords (as described by
Rosen et al. [47]), such as “bug” or “fix”. Identify the modified lines l in the
commits cfix.

2. Find out previous commits cbad on which the lines l were added or modified pre-
viously to the corresponding change in cfix. Label each commit cbad as defective.

We conduct this procedure using the training interval and the gap for labeling training
data, and using all of the commits for labeling test data.

5.5 Preprocessing by z-score

z-score is a popular normalization approach in defect prediction [62]. z-score normal-
izes the input data to mean 0 and variance 1. The equation of z-score is:

Xz�score =
Xorg � µ
�

(1)

where µ is the mean of the values of a feature for commits. � is the variance of the
values of a feature for commits. Xorg is a vector of all values (all commits) of a
feature. Xz�score is a vector of all values (all commits) of a normalized feature.

15

16 Kondo et al.

5.6 Studied Projects

For our experiments, we use six open source projects: Hadoop, Camel, Gerrit, Os-
mand, Bitcoin and Gimp. Table 6 shows details of the projects. The studied projects
include software for various fields, such as a server or an application, and are written
in two popular programming languages (C++ and Java). We calculate the context
metrics and the indentation metrics for each commit of these projects. For more pre-
cise analysis, we study all the commits that have changed at least one line in the
source code.

5.7 Resampling Approach

While learning the defect prediction model, the learning performance is a↵ected by
imbalanced data [54]. In our case, Table 6 shows that “clean” commits outnumber
“defective” commits. Hence, if we use this data directly as training data, the learning
performance could decrease. General resampling approaches remedy this problem,
as shown by prior studies [22, 54, 61].

For our experiment, we use random under-sampling. Random under-sampling
reduces the majority class at random to make the size of the majority class equal to
the size of the minority class. Because we must evaluate our approach on real data,
we apply resampling only to training data, not to test data.

5.8 Evaluation Measures

To measure the impact of the context metrics for defect prediction, we use three eval-
uation measures: the area under the receiver operation characteristic curve (AUC), the
Matthews correlation coe�cient (MCC), and Brier score (Brier)5. Precision and Re-
call are frequently used in defect prediction as evaluation measures. However, several
researchers warned that these measures show biased results [5, 6, 55].

AUC and Brier score are threshold-independent measures. Tantithamthavorn et
al. [55] suggested to use threshold-independent measures to address pitfalls in defect
prediction research. Although MCC is a threshold-dependent measure, MCC is not
a↵ected by the skewness of defect data [4, 62] and we want to better understand the
predicting power of the metrics [21]. Therefore, we also use MCC in this paper. The
threshold of MCC is 0.5.

We use the Scott-Knott ESD test [57] (using 95% significance level) to compare
the context metrics and the traditional code churn metrics. The Scott-Knott test is a
hierarchical clustering algorithm that ranks the distributions of values. In particular,
metrics with distributions that are not statistically significantly di↵erent are placed
in the same rank. The Scott-Knott ESD test is an extension of the Scott-Knott test,
which not only ranks based on significance, but also on Cohen’s d e↵ect size [7]. The

5 Note that while higher values of AUC and MCC are better than lower values, lower values of Brier
score are better than higher values. This is because Brier score is the sum of the mean squared di↵erences
between predicted probabilities and actual binary labels.

16

The Impact of Context Metrics on Just-In-Time Defect Prediction 17

Scott-Knot ESD test places distributions which are not significantly di↵erent, or have
a negligible e↵ect size, in the same rank. We use the ScottKnottESD R package6

that was provided by Tantithamthavorn [56]. We also apply the Scott-Knott ESD test
to the ranks that are computed by the Scott-Knott ESD test.

The reason why we apply the Scott-Knott ESD test twice is to avoid the variances
of the values of the evaluation measures across the studied projects. If there exist
the variances across the studied projects, it would be di�cult to compare the studied
metrics over all the studied projects instead of each studied project. This idea was
proposed by Ghotra et al. [11]. They applied Scott-Knott test twice to ensure that they
recognized techniques that perform well across the studied projects. They showed the
following example: if a prediction model has an AUC of 0.9 on project A, and 0.5 on
project B, we would get worse result while using Scott-Knott test once for all projects.
However, if an AUC of 0.5 is the best AUC value in the project B, and 0.9 is also
the best value in the project A, then this classification technique should be the best-
performing technique. The first Scott-Knott test computes the rank within a project.
And the second Scott-Knott test computes the rank across the projects without the
variance of the values of the evaluation measures due to using the rank. We use the
Scott-Knott ESD test instead of the Scott-Knott test in order to consider the e↵ect
size. We call this procedure as double Scott-Knott ESD test.

The results of the Scott-Knott ESD test and the double Scott-Knott ESD test are
a rank (number) for each metric. The smallest rank, 1, indicates the best rank. The
largest rank indicates the worst rank. A rank can contains multiple metrics at once.
We interpret metrics which have many smallest/smaller ranks as the best metrics
since it indicates that the metrics significantly outperform many others. Hence, for
the Scott-Knott ESD test, we used the top-3 ranks to evaluate the metrics across the
studied projects. We report metrics which have the most top-3 ranks across the studied
projects as the best metrics in the Scott-Knott ESD test.

For the double Scott-Knott ESD test, we used boxplots to show the ranks of the
studied metrics for each evaluation measure. Each boxplot contains six ranks by the
Scott-Knott ESD test for all the studied projects. The double Scott-Knott ESD test
classifies these boxplots by the Scott-Knott ESD test. This analysis avoids the vari-
ances of the actual performance di↵erences across the studied projects due to using
the rank. Our interpretation is that metrics which have the smallest rank as the best
metrics since it indicates that the metrics significantly outperform many others.

5.9 Prediction Models

We use two defect prediction models, logistic regression model (LR) [33] and random
forest model (RF) [19]. We give a brief overview of the idea behind the prediction
models:

– Logistic Regression (LR) [33]: LR is a frequently used defect prediction model.
They build a linear model which has all metrics as explanation variables, these

6 https://github.com/klainfo/ScottKnottESD

17

https://github.com/klainfo/ScottKnottESD

18 Kondo et al.

coe�cients, and a bias. LR feeds the output of this linear model to a sigmoid
function [15]. The output of the sigmoid function corresponds to the probability.

– Random Forest (RF) [19]: RF is an ensemble learning model. RF builds various
decision trees [44] based on subsets of metrics. Finally, RF merges all the results
of the decision trees, and provides the probability of defect.

Prior work [13, 56] showed that the parameter optimization of the prediction mod-
els crucially a↵ects the prediction performance. For example, Tantithamthavorn et
al. [56] showed that a simple automated parameter optimization can dramatically im-
prove the AUC performance of defect prediction models (the best case is about 40
percentage points of AUC). Hence, considering the parameter optimization is also an
important aspect in our experiment.

For LR, we consider a parameter: C.

– C: C is a parameter which indicates the regularization strength. For example, if
we have many metrics but not much data, LR would optimize its parameter for the
training data excessively. Hence, LR provides worse performance for the test data.
To address this challenge, the regularization strength C is used when optimizing
the parameter. We study the C of 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, and 100
when using the change metrics and COMB. For the other metrics, we do not use
the C since the number of metrics is 1 at a prediction model.

In addition, we need to consider the correlation between the studied metrics. If the
studied metrics are correlated, LR would get multicollinearity problem [9]. When us-
ing the change metrics, we need to consider the correlation. To avoid the correlated
metrics, prior work [22] proposed a preprocessing. We follow the same preprocessing
of prior work [22] that was described in Section 5.2. COMB has two metrics. How-
ever, they are not correlated (see Table 21). Hence, we do not need to deal with the
correlation in COMB.

For RF, we keep using the normalized change metrics for LR. In addition, we
consider two parameters: mtry and number of trees that are specific parameters in RF.

– mtry: mtry is a parameter which indicates the number of metrics randomly se-
lected for each node in a tree. For example, if we set mtry=2, RF selects 2 metrics
from the studied metrics to generate a node in a tree for splitting the studied com-
mits. We study the mtry of 1, 2, 5, 10, and 12 when using the normalized change
metrics, 1 and 2 when using COMB, and 1 when using other metrics since the
number of normalized change metrics is 12, the number of metrics in COMB is
2, and the number of other metrics is 1 at a prediction model.

– number of trees: Number of trees is a parameter which indicates the number of
trees which RF generates. RF merges all the outputs of the trees for computing
the final result. We study the number of trees of 2, 5, 10, 50, 100, 500, 1,000.

We optimize these parameters for each iteration. We split the training data to
80% of the training data and 20% of validation data. We use the training data to train
the model based on a parameter setting, and evaluate that parameter setting on the
validation data. We use the best parameter setting on the test data.

18

The Impact of Context Metrics on Just-In-Time Defect Prediction 19

6 Research Questions and Methodology

6.1 Research Questions

Our proposed context metrics have three parameters: commit c, context size n and
chunk type t. Hence, we first study which configurations of these parameters are the
best for predicting defective commits. Because c is a parameter that cannot be opti-
mized, we study n and t to design the best context metrics. To do this, we formulate
the following research question: (RQ1) What is the impact of the di↵erent variants of
context metrics on defect prediction?

RQ1 does not confirm what is the impact of the context metrics for defect pre-
diction compared to the traditional code churn metrics. Hence, we also study the
prediction performance of the context metrics compared to the traditional code churn
metrics that are the change metrics, their subsets and the indentation metrics in order
to confirm whether the context metrics are e↵ective or not. We additionally study the
performance of extended context metrics, which are combinations between the con-
text metrics and the traditional code churn metrics for defect prediction in order to
improve the predicting power of the context metrics. The extended context metrics
count (1) number of words and (2) number of keywords in the context lines and the
changed lines. To do this, we formulate the following research question: (RQ2) Do
context lines improve the performance of defect prediction?

RQ2 compares the prediction performance across the context metrics, the ex-
tended context metrics, and the traditional code churn metrics. However, we do not
study combination metrics between the context metrics; we use a context metric alone
on a prediction model in RQ1 and RQ2. Hence, in this RQ, we study the impact of
combination metrics that use two extended context metrics that count (1) number of
words and (2) number of a certain keyword (e.g., “goto”) at a prediction model. To
do this, we formulate the following research question: (RQ3) What is the impact of
combination metrics of context metrics on defect prediction?

6.2 Methodology

We explain our experimental methodology.

6.2.1 RQ1. What is the impact of the di↵erent variants of context metrics on defect
prediction?

We conduct two experiments in order to study the impact of chunk types and con-
text sizes for just-in-time defect prediction. We first study the impact of chunk types.
Second, we study the impact of context size based on a fixed chunk type. In each
experiment, we build the studied defect prediction models and predict defective com-
mits in the studied project histories.

We consider two supervised learning models as defect prediction models that are
LR and RF. Prior research showed inconsistent results that prediction models provide
significant di↵erence [11] and no significant di↵erence [30, 34, 49]. The main point

19

20 Kondo et al.

in this paper is to evaluate the impact of the context metrics for defect prediction,
not the impact of the prediction models. Hence, we use only two models and do not
consider the di↵erence between the prediction models.

We split the set of commits into training data and test data using the online change
classification [54]. 10-fold cross validation is a frequently used validation technique
in defect prediction, however; cross validation has risks such as making artificially
good results due to mixing past and future commits. The online change classifica-
tion addresses the challenges of the cross validation and improves the quality of the
analysis in just-in-time defect prediction [54]. We described details in Section 5.4.

We compute the context metrics for each chunk type for each commit. We apply
preprocessing to the context metrics in the training and test data. We use z-score;
the mean and the variance of z-score are decided from the training data. We use the
context metric as an input of the studied models. The models are trained using training
data, and compute prediction results using test data. When training the model, we
optimize the parameters of the prediction models. We described details in Section 5.9.

Finally, we evaluate the results using three evaluation measures: AUC, MCC,
and Brier score. Each measure has multiple values that come from the number of
the iteration step sizes of the online change classification. We show the number of
iteration step sizes in Table 5. For example, it is 17 that is the number of iteration
step size of the Hadoop project. Hence, we get 17 values for each of three evaluation
measures. For each measure, we summarize the multiple values with its median value.
We conduct the above procedure for each studied project. Therefore, each context
metric has 12 median values in the online change classification (for six projects times
two prediction models).

We conduct this procedure for each chunk type. Then, we compare the context
metrics of the di↵erent chunk types w. r. t. the three evaluation measures. We apply
the Scott-Knott ESD test [57] to the context metrics for each evaluation measure for
each project. Each context metric has two values (results by LR and RF models) for
each project. Then, we evaluate statistically significant di↵erences and e↵ect sizes
between the context metrics for each evaluation measure for each project. The result
is shown as a rank. For example, if a certain context metric A has the best value
on a certain evaluation measure, this context metric A achieves the rank 1. If another
context metric B has no significant di↵erence to the context metric A that achieves the
rank 1, this context metric B also achieves the rank 1. If another context metric C has
significant di↵erence to the context metric A and B, this context metric C achieves
rank 2.

Although we would get the rank from the first Scott-Knott ESD execution, the
rank is computed for each project. Hence, we would get di↵erent ranks for each
project on a context metric. To avoid the variances of the ranks across the studied
projects, we additionally apply the Scott-Knott ESD test to the ranks instead of the
actual values of the evaluation measures, the double Scott-Knott ESD test. Each con-
text metric has six ranks (results by all the studied projects) for each evaluation mea-
sure. The additional Scott-Knott ESD test compares the studied context metrics in
terms of the rank. Then, we evaluate statistically significant di↵erences and e↵ect
sizes between the context metrics for each evaluation measure.

20

The Impact of Context Metrics on Just-In-Time Defect Prediction 21

We conduct the same procedures on di↵erent context sizes instead of di↵erent
chunk types before we apply the Scott-Knott ESD test. In this comparison, we then
compare the values of evaluation measures for each iteration step between di↵erent
context sizes. We count the iteration steps for each context size that provide the best
prediction performance value. We make histograms of the number of iteration steps
that provide the best prediction performance for each context size for each evalua-
tion measure and context metric. From these histograms, we conclude the impact of
di↵erent context sizes for the performance of defect prediction. For example, let us
suppose we conducted an experiment with that iteration steps are 100, context sizes
are 1, 2, and 3; the context size 1 has 50 iteration steps where the context size 1 has
the best performance, the context size 2 has 20 iteration steps where the context size
2 has the best performance, and the context size 3 has 30 iteration steps where the
context size 3 has the best performance. In this example, we would get histograms in
which the context size 1 has 40, 2 has 20, and 3 has 30; hence, we would conclude
that the context size 1 is the best.

From the results, we investigate the impact of the context metrics variants (di↵er-
ent chunk types and context sizes). The goal of this RQ1 is to find the best context
metrics variant for just-in-time defect prediction. The best context metrics variant is
considered as the context metrics in RQ2.

6.2.2 RQ2. Do context lines improve the performance of defect prediction?

To answer this RQ, we compare the best variant of the context metrics NCW and
NCKW (as determined in RQ1) with the change metrics and their subsets (both de-
scribed in Section 5.2), the indentation metrics (described in Section 5.1) and the ex-
tended context metrics. We build the defect prediction models to evaluate the metrics.
The prediction procedure is similar to the procedure for RQ1; however, the prepro-
cessing has di↵erences (the details are described later in this section).

In order to improve the performance of defect prediction, we define two new
metrics based on NCW and NCKW that measure both the context and the changed
lines called extended context metrics. These metrics are NCCW (number of words in
the context and the changed lines) and NCCKW (number of keywords in the context
and the changed lines) in Table 7. NCCW and NCCKW use only added-lines as the
changed lines. This is because it is known that a change metric, “added-lines”, is one
of the best indicator of change risk [50, 51]. These metrics will show the results of
the combination between the context metrics and the traditional code churn metrics.
From the results of RQ1, we choose the appropriate chunk type from ‘+’, ‘-’ and
‘all’, and the context size from one to ten for NCCW and NCCKW.

We apply the preprocessing to the change metrics and their subsets that was de-
scribed in Section 5.9. For the context metrics, we apply z-score to normalize to a
mean of 0 and a variance of 1 since the subsets of the change metrics are also nor-
malized by z-score.

21

22 Kondo et al.

Table 7: The extended context metrics.

Metrics Description

NCCW(c, n, t) Extend NCW(c, n, t) using not only context lines but also changed lines.
NCCKW(c, n, t) Extend NCKW(c, n, t) using not only context lines but also changed lines.

6.2.3 RQ3. What is the impact of combination metrics of context metrics on defect
prediction?

To answer this RQ, we use our new combination metrics that use both NCCW and
NCCKW. This is because, according to the results of RQ2, NCCW and NCCKW have
better prediction performance than NCW and NCKW alone. NCCW and NCCKW
are strongly correlated with each other (see Section 8.3). Hence, we need to remove
the correlation in order to address the multicollinearity problem [9] for using them
on a prediction model.

We, hence, modify NCCKW into counting only each specific keyword instead of
counting all keywords (Table 2, # of keywords: 20). Hence, we get 20 variants of NC-
CKW. For example, a variant of NCCKW measures the number of “goto” statements
(in both the context and the changed lines). We call each of these metrics as a modi-
fied NCCKW. There are 20 modified NCCKW. This modification removes the strong
correlation between NCCW and NCCKW. NCCW and each modified NCCKW are
rarely correlated.

We use NCCW and each of the modified NCCKW on a prediction model as two
explanation variables, and study the performance of each of the modified NCCKW.
From this result, we conclude the best combination metrics for NCCW and a modified
NCCKW. We call the combination metrics as COMB. We compare COMB with the
other metrics following the same procedures of the procedure for RQ2.

7 Case Study Results

7.1 RQ1. What is the impact of the di↵erent variants of context metrics on defect
prediction?

For the context metrics, the best chunk type is ‘+’.
Table 8 shows the ranks of the Scott-Knott ESD test results for each evaluation

measure for each context metric variant. Each cell shows the rank of a context metric
variant in an evaluation measure and a project. Note that we compared variants with
di↵erent chunk types with the same context size (n = 3, the default context size of the
di↵ command git show). The rank is computed across context metric variants for
each project and evaluation measure. For example, the gray cells in Table 8 are a set
where the Scott-Knott ESD test is conducted. We summarize the number of projects
that are the top three ranks for each context metric variant (row) in columns of #R1,
#R2, and #R3. Hence, the sum of numbers between #R1 to #R3 in a row is 6 or less.
The column of Sum is the sum of #R1, #R2, and #R3. Due to space limitation, we

22

The Impact of Context Metrics on Just-In-Time Defect Prediction 23

Table 8: The ranks of the Scott-Knott ESD test results for each context metric variant
and studied project on three evaluation measures. Please see text for a full explana-
tion. The actual values of each evaluation measure by RF and LR models are shown
in Appendix (Table 15, 16, and 17).

Evaluation Metrics Chunk Projects Numbers of Ranks
Measures Types B. C. Ge. Gi. H. O. #R1 #R2 #R3 Sum

+ 1 1 1 1 1 2 5 1 0 6
NCW - 2 5 4 4 2 4 0 2 0 2

AUC all 1 2 2 2 1 2 2 4 0 6

+ 1 2 2 3 1 1 3 2 1 6
NCKW - 2 4 5 5 2 3 0 2 1 3

all 1 3 3 3 1 1 3 0 3 6

+ 2 1 2 1 3 1 3 2 1 6
NCW - 3 4 4 4 4 2 0 1 1 2

MCC all 2 1 2 2 3 1 2 3 1 6

+ 1 2 2 3 1 1 3 2 1 6
NCKW - 2 3 3 4 3 1 1 1 3 5

all 2 2 1 2 2 1 2 4 0 6

+ 3 3 1 1 2 2 2 2 2 6
NCW - 3 3 2 1 2 2 1 3 2 6

Brier all 3 4 1 1 2 2 2 2 1 5

+ 1 2 1 3 2 1 3 2 1 6
NCKW - 2 1 2 2 1 2 2 4 0 6

all 2 2 1 2 1 1 3 3 0 6

shorten the project names in the table: Bitcoin is B., Camel is C., Gerrit is Ge., Gimp
is Gi., Hadoop is H., and Osmand is O.

Regarding AUC, using only the ‘+’ chunk on NCW yields the best results and
statistically outperforms the other metrics except the Osmand project, i.e., the rank is
one in 5 of 6 projects. Regarding MCC, we find that the rank is one in 3 of 6 projects,
and the rank is one, two or three in all projects when using ‘+’ chunk on NCW or
NCKW. Regarding Brier score, using the ‘+’ or ‘all’ chunk on NCKW yields the best
results and statistically outperforms the other metrics for 3 of 6 studied projects.

Figure 6 shows the results of the double Scott-Knott ESD test on the results for
each context metric in all projects; each boxplot contains six ranks of the first Scott-
Knott ESD test execution for the studied projects on a chunk type. The x-axis indi-
cates a chunk type; Plus, Minus, and All correspond to ‘+’, ‘-’, and ‘all’; the y-axis
indicates the rank for each studied project in the first Scott-Knott ESD test execution.
We use two gray colors (dark gray and light gray) and two lines (solid line and dashed
line) indicate a rank according to the double Scott-Knott ESD test. The di↵erent rank
indicates a statistical significant di↵erence with small e↵ect size or over. We observe
that ‘+’ achieves the best median rank for all the evaluation measures and the context
metrics.

With one exception, ’+’ consistently performed better than other types of chuck
types. This exception is shown in Figure 6(f) shows that ‘all’ chunk statistically out-
performs ‘+’ chunk on NCKW on Brier score; however, the median, and 25 and 75

23

24 Kondo et al.

●

1

2

3

4

5

Plus All
Minu

s

Th
e

fir
st

 S
co

tt−
Kn

ot
t E

SD
 te

st
 ra

nk

(a) NCW AUC

1

2

3

4

5

Plus All
Minu

s

Th
e

fir
st

 S
co

tt−
Kn

ot
t E

SD
 te

st
 ra

nk

(b) NCKW AUC

●

1

2

3

4

Plus All
Minu

s

Th
e

fir
st

 S
co

tt−
Kn

ot
t E

SD
 te

st
 ra

nk

(c) NCW MCC

●1

2

3

4

Plus All
Minu

s

Th
e

fir
st

 S
co

tt−
Kn

ot
t E

SD
 te

st
 ra

nk

(d) NCKW MCC

1

2

3

4

Plus
Minu

s All

Th
e

fir
st

 S
co

tt−
Kn

ot
t E

SD
 te

st
 ra

nk

(e) NCW Brier

1.0

1.5

2.0

2.5

3.0

All
Plus

Minu
s

Th
e

fir
st

 S
co

tt−
Kn

ot
t E

SD
 te

st
 ra

nk

(f) NCKW Brier

Fig. 6: The results of the double Scott-Knott test on the results for each context metric
in all projects. Please see text for a full explanation.

24

The Impact of Context Metrics on Just-In-Time Defect Prediction 25

(a) NCW AUC (b) NCKW AUC

(c) NCW MCC (d) NCKW MCC

(e) NCW Brier (f) NCKW Brier

Fig. 7: The numbers of iteration steps that provide the best prediction performance for
each context size. We use all iteration steps of all studied projects on two prediction
models (LR and RF). The sum of all iteration steps is 188 (17 + 37 + 30 + 14 + 20 +
70 from Table 5). Hence, the sum of all values is 376 (188 iteration steps * 2 models).
For example, the sum of the y-axis values in Figure 7(a) between 1 to 10 is 376.

25

26 Kondo et al.

(a) NCKW RF Hadoop (context size=10) (b) NCKW LR Hadoop (context size=10)

Fig. 8: The numbers of studied commits in Hadoop project when the context size is
10. The x-axis refers to the predicted probabilities using NCKW that were computed
by either RF (left) or LR (right) models.

percentiles are same. Hence, we choose ‘+’ chunk as the best chunk type for our
context metrics.

A context size of 1, provides better prediction performance for NCW, while
a context size of 10, provides better prediction performance for NCKW.

Figure 7 shows the numbers of iteration steps that provide the best prediction
performance on di↵erent context sizes. The left column of Figure 7 (Figure 7(a),
7(c) and 7(e)) shows the results for NCW with chunk type ‘+’. The right column of
Figure 7 (Figure 7(b), 7(d) and 7(f)) shows the results for NCKW with chunk type
‘+’.

We can observe opposite results between the NCW and NCKW. On the NCW,
the context size of 1 has the highest histogram. This result indicates that the context
size of 1 provides the most best prediction performance in all the iteration steps com-
paring to other context sizes. However, on the NCKW, the context size of 10 has the
highest histogram on AUC and Brier score. The context size of 1 in MCC is slightly
higher than the other context sizes. This result implies that the threshold, 0.5, is not
suitable for NCKW. Figure 8 shows the numbers of studied commits with predicted
probabilities that were computed by the prediction models in Hadoop project when
the context size is 10. The numbers of commits in Figure 8(b) are gathered more
closely around 0.5 and many defective commits (orange) are lower than 0.5 (by LR),
however, the numbers of commits in Figure 8(a) are not gathered around 0.5 (by RF).
Because the threshold 0.5 provides many defective commits that are identified as
clean in Figure 8(b), this distribution a↵ects the results on MCC when using NCKW.
Hence, the results are best when the context size is 10 in AUC and Brier score, how-
ever; the result is not best when the context size is 10 in MCC. We can observe the
same tendency on di↵erent studied projects.

From these results, as the appropriate context size, we use 1 for NCW, and 10
for NCKW. Hereafter, we refer to NCW(c, 1,+) and NCKW(c, 10,+) as NCW and
NCKW, respectively. In addition, we refer to NCCW(c, 1,+) and NCCKW(c, 10,+)
as NCCW and NCCKW, respectively.

26

The Impact of Context Metrics on Just-In-Time Defect Prediction 27

7.2 RQ2. Do context lines improve the performance of defect prediction?

The extended context metric NCCW, the indentation metrics, and lines added
(LA) provide many top three rank performance on just-in-time defect predic-
tion.

Table 9 shows the ranks according to the Scott-Knott ESD test results of the three
evaluation measures for each studied metric. Each cell includes the rank. The rank is
computed across the studied metrics for each project. For example, the gray cells in
Table 9 (a) is a set where the Scott-Knott ESD test is computed. The actual values of
the three evaluation measures that are used in the Scott-Knott ESD test are shown in
Appendix as Table 18, 19 and 20. We summarize the number of projects that are the
top three ranks for each studied metric (row) in columns #R1 to #R3, and the column
Sum is the sum of #R1, #R2, and #R3. The maximum value of Sum is six that is the
number of the studied projects. Note that “Changes” in the table (also in other tables
and figures of this paper) indicates the change metrics.

NCCW (NCCW(c, 1,+)) provides the top three rank prediction performance in
all projects on AUC and MCC, and 5 of 6 projects on Brier score. NCCW does not
provide the top one rank prediction performance on Brier score. However, this is not
to be a challenge for just-in-time defect prediction. Brier score is the sum of the mean
squared di↵erences between predicted probabilities, i.e., the outputs computed by RF
and LR models, and actual binary labels, i.e., clean or defect in the studied com-
mits. From this point, this result implies that the probabilities that were computed
by NCCW might be close to 0 or 1 (clean or defect) than other studied metrics. The
probabilities that are closer to 0 or 1 indicate that the probabilities clearly indicate
either clean or defect even if predicted results are incorrect. However, the results on
AUC and MCC are good. Hence, even if incorrect results are far from correct results,
NCCW still has strong predicting power because of its MCC results and NCCW
might provide better performance at other thresholds on average because of its AUC
results. This result indicates that the extended context metric NCCW has strong pre-
dicting power for just-in-time defect prediction in the studied churn metrics.

Added spaces (AS), added braces (AB) and lines of code added (LA) also provide
many top three rank prediction performance on AUC and MCC. For AS and AB, all
projects on AUC and 5 of 6 projects on MCC, for LA, all projects on AUC and
MCC. This result also shows that the indentation metrics and a churn metric LA
have strong predicting power. All of the metrics do not provide the top one rank
prediction performance on Brier score as well. From the same reason of the results of
the extended context metrics, we conclude that AS, AB and LA have strong predicting
power.

The change metrics that use all of the churn metrics provide that all projects are
in the top three ranks on Brier score, while rarely providing the top three rank perfor-
mance on AUC and MCC. This result implies that the probabilities that were com-
puted by the change metrics might be close to 0.5 or the correct label than probabili-
ties given by the other studied metrics. The probabilities that are close to 0.5 indicate
that the probabilities are close to the correct label in incorrect results. Figure 9 shows
the number of studied commits with predicted probabilities that were computed by
the prediction models in the Camel project using NCCW and the change metrics. We

27

28 Kondo et al.

Table 9: The ranks of the Scott-Knott ESD test results for studied metrics. #R1 (#R2,
or #R3) is the sum of the numbers of cases where the rank is one (two, or three);
Sum = #R1 + #R2 + #R3. The actual values that were computed by RF and LR are
shown in Appendix.

Metric Metrics Projects Numbers of Ranks
Types B. C. Ge. Gi. H. O. #R1 #R2 #R3 Sum

(a) AUC

NCW(c,1,+) 6 8 5 4 4 2 0 1 0 1
Context NCKW(c,10,+) 7 8 7 4 3 2 0 1 1 2

NCCW(c,1,+) 1 3 3 1 2 2 2 2 2 6
NCCKW(c,10,+) 4 7 4 2 1 1 2 1 0 3

Indentation AS 1 1 1 2 2 2 3 3 0 6
AB 3 2 2 3 2 2 0 4 2 6

Changes 5 3 6 7 1 4 1 0 1 2
NS 12 10 10 9 7 7 0 0 0 0
ND 10 5 8 8 3 5 0 0 1 1

Traditional NF 8 4 5 6 2 3 0 1 1 2
Entropy 9 6 6 6 5 3 0 0 1 1

LA 2 1 3 1 1 2 3 2 1 6
LD 11 9 9 5 5 6 0 0 0 0
LT 13 11 11 10 6 8 0 0 0 0

(b) MCC

NCW(c,1,+) 5 7 5 5 4 1 1 0 0 1
Context NCKW(c,10,+) 4 7 6 3 4 2 0 1 1 2

NCCW(c,1,+) 3 1 2 2 3 2 1 3 2 6
NCCKW(c,10,+) 3 5 3 1 2 1 2 1 2 5

Indentation AS 1 2 1 4 3 3 2 1 2 5
AB 2 3 2 2 4 3 0 3 2 5

Changes 5 5 5 8 1 7 1 0 0 1
NS 10 8 8 10 7 8 0 0 0 0
ND 8 4 5 9 4 4 0 0 0 0

Traditional NF 6 2 4 4 2 3 0 2 1 3
Entropy 7 6 5 7 5 5 0 0 0 0

LA 3 1 3 1 3 2 2 1 3 6
LD 8 8 7 6 5 6 0 0 0 0
LT 9 9 9 11 6 9 0 0 0 0

(c) Brier Score

NCW(c,1,+) 5 5 5 9 2 3 0 1 1 2
Context NCKW(c,10,+) 5 4 5 8 2 2 0 2 0 2

NCCW(c,1,+) 3 3 3 6 3 2 0 1 4 5
NCCKW(c,10,+) 3 3 4 6 2 2 0 2 2 4

Indentation AS 2 2 2 9 3 2 0 4 1 5
AB 3 2 3 11 3 2 0 2 3 5

Changes 1 1 1 1 1 1 6 0 0 6
NS 7 4 7 2 4 2 0 2 0 2
ND 7 4 6 5 3 4 0 0 1 1

Traditional NF 8 5 6 7 2 4 0 1 0 1
Entropy 6 3 5 3 3 4 0 0 3 3

LA 4 2 4 4 3 2 0 2 1 3
LD 8 5 6 10 3 4 0 0 1 1
LT 9 6 8 12 4 5 0 0 0 0

28

The Impact of Context Metrics on Just-In-Time Defect Prediction 29

(a) NCCW RF (b) NCCW LR

(c) Changes RF (d) Changes LR

Fig. 9: The number of studied commits in Camel project. The x-axis refers to the
probabilities using each metric on either RF (left column) or LR (right column) mod-
els.

Table 10: The values of our proposed di↵erence of the LR model. The gray cells refer
to the smallest di↵erence values by the metrics within each project.

Metric Metrics Projects
Types Bitcoin Camel Gerrit Gimp Hadoop Osmand

NCW(c,1,+) 747 2,981 1,883 3,568 1,403 1,188
Context NCKW(c,10,+) 744 2,989 1,907 3,577 1,426 1,199

NCCW(c,1,+) 700 2,859 1,819 3,437 1,373 1,197
NCCKW(c,10,+) 700 2,913 1,856 3,529 1,402 1,202

Indentation AS 706 2,882 1,843 3,514 1,410 1,204
AB 758 2,885 1,849 3,688 1,403 1,204

Changes 675 2,509 1,749 2,898 1,212 1,203
NS 836 3,001 1,972 3,281 1,534 1,233
ND 818 2,921 1,937 3,411 1,431 1,222

Traditional NF 790 2,935 1,955 3,590 1,458 1,219
Entropy 782 2,815 1,847 3,395 1,388 1,194

LA 825 2,905 1,908 3,589 1,492 1,212
LD 830 3,032 2,022 3,673 1,526 1,220
LT 834 3,031 2,060 3,780 1,294 1,238

29

30 Kondo et al.

can observe that when using the RF model, the probabilities that were computed by
the change metrics are close to 0.5 than the NCCW.

When using the LR model, the probabilities that were computed by the NCCW is
close to 0.5 than the change metrics. However, the mean squared di↵erences (Brier
score) of the results of the change metrics are smaller than NCCW in the half of
the projects (Table 20 in Appendix). To show this result in a simpler manner, we
define a di↵erence between the probabilities and the actual labels in LR model. In
the following, Di↵ is the di↵erence on a metric in a project, C is a set of all of the
studied commits c, abs is a function that computes absolute value, pc is the predicted
probabilities of a commit c and labelc is the actual label of a commit c where defective
commits are 1 and clean commits are 0. Based on these parameters, we define the Di↵
as follows:

Di↵ =
X

C

abs(pc � labelc).

This is a simple variant of the Brier score.
Table 10 shows the values of the di↵erence of the LR model. The gray cells

indicate the smallest values of the di↵erence between the metrics in a project. We can
observe that the change metrics achieve gray cells in the majority (5 of 6) of projects.
This result implies that although probabilities that were computed by the NCCW
are close to 0.5 than the change metrics, the di↵erence of the results of the change
metrics is smaller than NCCW. Hence, the probabilities are close to the correct label
than NCCW. This is the reason why the change metrics provide that all projects are
in the top three rank on Brier score.

The indentation metric, AS, is the best-performing metric on AUC and MCC
according to the double Scott-Knott ESD test.

Figure 10 shows the results of the double Scott-Knott ESD test on the results for
each studied metric in all projects; each boxplot contains six ranks of the first Scott-
Knott ESD test execution for the studied projects on a studied metric. We use two
gray colors (dark and light gray) and two lines (solid and dashed lines) to represent
the ranks according to the double Scott-Knott ESD test; the adjacent boxplots with
the same gray color and line indicate the same rank. Otherwise, the rank is changed
at that point. The di↵erent rank indicates a statistical significant di↵erence with small
e↵ect size or over according to the double Scott-Knott ESD test. We observe that
AS is the best-performing metric on both AUC and MCC. The change metrics are the
best-performing metrics on Brier score, and AS is the second best-performing metric.
This result provides that AS is a top rank metric across the studied projects on AUC
and MCC, and the change metrics are the top rank metrics across the studied projects
on Brier score.

The extended context metric, NCCW, and the churn metric, LA, are also
better metrics according to the double Scott-Knott ESD test.

LA provides the second-rank performance in AUC and Brier score, and the first
rank performance in MCC as well. The extended context metric NCCW provides the
third rank performance in AUC, the second rank performance in Brier score, and the
first rank performance in MCC as well. This result provides that NCCW and LA are
also better metrics across the studied projects on AUC and MCC.

30

The Impact of Context Metrics on Just-In-Time Defect Prediction 31

●

●

5

10

AS LA
NCCW AB

NCCKW

Cha
ng

es NF
NCW

NCKW
Entr

op
y ND LD NS LT

Th
e

fir
st

 S
co

tt−
Kn

ot
t E

SD
 te

st
 ra

nk

(a) AUC

●

● ●

●

●

3

6

9

NCCW LA AS

NCCKW AB NF
NCKW

NCW

Cha
ng

es ND

Entr
op

y LD NS LT

Th
e

fir
st

 S
co

tt−
Kn

ot
t E

SD
 te

st
 ra

nk
(b) MCC

●

●

● ●

●

2.5

5.0

7.5

10.0

12.5

Cha
ng

es LA
NCCW

NCCKW AS AB

Entr
op

y

NCKW NS
NCW ND NF LD LT

Th
e

fir
st

 S
co

tt−
Kn

ot
t E

SD
 te

st
 ra

nk

(c) Brier score

Fig. 10: The double Scott-Knott ESD test results for each studied metric in all
projects. Please see text for a full explanation.

In this RQ, we study the metrics in terms of the prediction performance. However,
we ignore other aspects such as detected defective commits. We closely look at the
detected defective commits, pair-wise relation across the studied metrics, and the
basic predicting power of the studied metrics in Section 8 (discussion).

7.3 RQ3. What is the impact of combination metrics of context metrics on defect
prediction?

“goto” statement is the best keyword for the modified NCCKW.
Figure 11 shows the results of the double Scott-Knott ESD test on the results for

each modified NCCKW in all projects. Each boxplot contains six ranks of the first

31

32 Kondo et al.

●

●

●

●

●

●

●

●

●

3

6

9

LE
AVE

EXCEPT
GOTO

FINALLY

CONTINUEDO

EXISTS

SWITCH
NOT

THROW
WHILE

CAT
CH

BREAK
CASE

DEFA
ULTTRY

FOR
ELS

E

RETURN IF

Th
e

fir
st

 S
co

tt−
Kn

ot
t E

SD
 te

st
 ra

nk

(a) AUC

●

●

● ●

●

●

●

5

10

GOTO

FINALLY

EXCEPT

LE
AVE

SWITCHDO

EXISTS

CONTINUE

BREAK
CASE

THROW
WHILE

CAT
CH

TRY

DEFA
ULTNOT

ELS
E IF

FOR

RETURN

Th
e

fir
st

 S
co

tt−
Kn

ot
t E

SD
 te

st
 ra

nk

(b) MCC

●

●

●

●

●

● ●

●

3

6

9

WHILEDO

EXISTS

THROW

CONTINUE

BREAK

SWITCH

DEFA
ULT

FOR
CASE

CAT
CH

NOT
ELS

E

FINALLYTRY

EXCEPT IF

LE
AVE
GOTO

RETURN

Th
e

fir
st

 S
co

tt−
Kn

ot
t E

SD
 te

st
 ra

nk

(c) Brier score

Fig. 11: The results of the double Scott-Knott ESD test on the results for each modi-
fied NCCKW in all projects. Please see text for a full explanation.

Scott-Knott ESD test execution within a studied project for all projects using a studied
keyword as the modified NCCKW. The x-axis indicates a keyword which is used on
the modified NCCKW; the y-axis indicates the rank for each studied project in the
first Scott-Knott ESD test execution. We use two gray colors (dark and light gray) and
two lines (solid and dashed lines) to represent the ranks according to the double Scott-
Knott ESD test; the adjacent boxplots with the same gray color and line indicate the
same rank. Otherwise, the rank is changed at that point. The di↵erent rank indicates
a statistical significant di↵erence with small e↵ect size or over. The first Scott-Knott
ESD test is applied to the values of the evaluation measures that were computed by
the results of the studied prediction models that use NCCW and a certain modified
NCCKW which uses a certain keyword (e.g., “goto”) as the explanation variables.

32

The Impact of Context Metrics on Just-In-Time Defect Prediction 33

Table 11: The ranks of the Scott-Knott ESD test results for studied metrics. #R1 (#R2,
or #R3) is the sum of the numbers of cases where the rank is one (two, or three);
Sum = #R1 + #R2 + #R3. The actual values that were computed by RF and LR are
shown in Appendix.

Metric Metrics Projects Numbers of Ranks
Types B. C. Ge. Gi. H. O. #R1 #R2 #R3 Sum

(a) AUC

NCW(c,1,+) 7 9 6 5 5 3 0 0 1 1
NCKW(c,10,+) 8 9 8 5 4 3 0 0 1 1

Context NCCW(c,1,+) 2 4 4 2 3 3 0 2 2 4
NCCKW(c,10,+) 5 8 5 3 2 2 0 2 1 3

COMB 1 1 1 1 1 1 6 0 0 6
Indentation AS 2 2 2 3 3 3 0 3 3 6

AB 4 3 3 4 3 3 0 0 4 4
Changes 6 4 7 8 2 5 0 1 0 1

NS 13 11 11 10 8 8 0 0 0 0
ND 11 6 9 9 4 6 0 0 0 0

Traditional NF 9 5 6 7 3 4 0 0 1 1
Entropy 10 7 7 7 6 4 0 0 0 0

LA 3 2 4 2 2 3 0 3 2 5
LD 12 10 10 6 6 7 0 0 0 0
LT 14 12 12 11 7 9 0 0 0 0

(b) MCC

NCW(c,1,+) 5 8 7 6 5 2 0 1 0 1
NCKW(c,10,+) 4 8 8 4 5 3 0 0 1 1

Context NCCW(c,1,+) 3 2 3 3 4 3 0 1 4 5
NCCKW(c,10,+) 3 6 5 2 3 2 0 2 2 4

COMB 1 1 1 1 1 1 6 0 0 6
Indentation AS 1 3 2 5 4 4 1 1 1 3

AB 2 4 4 3 5 4 0 1 1 2
Changes 5 6 7 9 2 8 0 1 0 1

NS 10 9 8 11 8 9 0 0 0 0
ND 8 5 7 10 5 5 0 0 0 0

Traditional NF 6 3 6 5 3 4 0 0 2 2
Entropy 7 7 7 8 6 6 0 0 0 0

LA 3 2 5 2 4 3 0 2 2 4
LD 8 9 8 7 6 7 0 0 0 0
LT 9 10 9 12 7 10 0 0 0 0

(c) Brier Score

NCW(c,1,+) 6 5 6 9 4 4 0 0 0 0
NCKW(c,10,+) 6 4 6 8 3 3 0 0 2 2

Context NCCW(c,1,+) 4 3 4 6 5 3 0 0 2 2
NCCKW(c,10,+) 4 3 5 6 3 3 0 0 3 3

COMB 3 3 2 2 2 1 1 3 2 6
Indentation AS 2 2 3 9 5 3 0 2 2 4

AB 4 2 4 11 5 3 0 1 1 2
Changes 1 1 1 1 1 2 5 1 0 6

NS 8 4 8 2 6 3 0 1 1 2
ND 8 4 7 5 5 5 0 0 0 0

Traditional NF 9 5 7 7 4 5 0 0 0 0
Entropy 7 3 6 3 5 5 0 0 2 2

LA 5 2 4 4 5 3 0 1 1 2
LD 9 5 7 10 5 5 0 0 0 0
LT 10 6 9 12 6 6 0 0 0 0

33

34 Kondo et al.

We observe that the number of “goto” statement in the context and changed lines
achieves the top-1 or 2 rank in AUC and MCC. In addition, the median rank value is
the best in AUC and MCC. The number of “goto” statement achieves the worst rank
in Brier score. From the same reason of RQ2 results in Brier score, we conclude that
the modified NCCKW which counts the number of “goto” statements is the strongest
metric on the combination with NCCW. In addition, the modified NCCKW is not
strongly correlated with NCCW (see Table 21). Hereafter, we refer to this variant
(using the number of “goto” statement) of the modified NCCKW as gotoNCCKW.
We use NCCW and gotoNCCKW for a prediction model in order to improve the
prediction performance. We refer to the combination metrics as COMB.

COMB provides the top-one rank prediction performance for all the studied
projects in AUC and MCC.

Table 11 shows the ranks according to the Scott-Knott ESD test results of the three
evaluation measures for each studied metric. We observe that COMB provides the
top-one rank prediction performance for all the studied projects in AUC and MCC.
In addition, except AS in MCC, there exists no other studied metrics that achieve the
top-one rank prediction performance. This result indicates that COMB are the best
prediction metrics in all the studied metrics. COMB achieves at least the top-three
rank prediction performance for all studied projects in Brier score.

COMB statistically outperforms the other studied metrics.
Figure 12 shows the results of the double Scott-Knott ESD test on the results

for each studied metric in all projects; each boxplot contains six ranks of the first
Scott-Knott ESD test execution for the studied projects on a studied metric. The x-
axis indicates a metric; the y-axis indicates the rank for each studied project in the
first Scott-Knott ESD test execution. We use two gray colors (dark and light gray) and
two lines (solid and dashed lines) to represent the ranks according to the double Scott-
Knott ESD test; the adjacent boxplots with the same gray color and line indicate the
same rank. Otherwise, the rank is changed at that point. The di↵erent rank indicates
a statistical significant di↵erence with small e↵ect size or over.

We observe that COMB are the best-performing metrics on both AUC and MCC.
This result provides that COMB are the top rank metrics across the studied projects
on AUC and MCC. Even on Brier score, COMB are the second rank metrics. The
best-performing metrics on Brier score is still the change metrics.

8 Discussion

8.1 Are the commits identified by the context metrics di↵erent than the ones
identified by the traditional churn metrics?

The proposed context metrics COMB identify some defective commits that
other chutn metrics cannot; these commits tend to have large context lines.

We define unique defective commits as the commits that are only identified by our
proposed metrics (and not by other metrics). The existence of these defective commits
contributes to defect prediction since they cannot be identified using traditional churn
metrics. Hence, we study the commits identified as defective by COMB.

34

The Impact of Context Metrics on Just-In-Time Defect Prediction 35

●

●

5

10

COMB AS LA
NCCW AB

NCCKW

Cha
ng

es NF
NCW

NCKW
Entr

op
yND LD NS LT

Th
e

fir
st

 S
co

tt−
Kn

ot
t E

SD
 te

st
 ra

nk

(a) AUC

●

●

● ●

●

●

2.5

5.0

7.5

10.0

12.5

COMB
NCCW AS LA

NCCKW AB NF
NCKW

NCW

Cha
ng

esND

Entr
op

y LDNS LT

Th
e

fir
st

 S
co

tt−
Kn

ot
t E

SD
 te

st
 ra

nk
(b) MCC

● ●

●

●

2.5

5.0

7.5

10.0

12.5

Cha
ng

es
COMB LA

NCCKW AS
NCCW AB

Entr
op

y

NCKWNS
NCWND NF LD LT

Th
e

fir
st

 S
co

tt−
Kn

ot
t E

SD
 te

st
 ra

nk

(c) Brier score

Fig. 12: The results of the double Scott-Knott ESD test on the results for each studied
metric in all projects. Please see text for a full explanation.

Figure 13 shows the values of the context metric NCW for the commits identified
as defective in Hadoop project. We can observe that COMB identifies the commits
that have higher NCW values as defective compared to the other metrics. For ex-
ample, the median NCW value of COMB-Changes is higher than the median NCW
value of Changes-COMB (Figure 13(a) and 13(b)). The results for the other projects
show the same tendency except NCCW; NCCW has higher NCW values in 4 of 6
projects since NCCW is also a context metric.

Because we use NCW values to show unique defective commits, this result may
seem obvious. However, even if we use LA value to show unique defective commits,
the median LA value of COMB-LA is higher than the median LA value of LA-COMB
in several projects. Figure 14 shows the values of LA for the commits identified as
defective by LR model in Bitcoin project and Hadoop project. In Bitcoin project, the

35

36 Kondo et al.

(a) RF (b) LR

Fig. 13: The values of the context metric NCW for the commits identified as defective
in Hadoop project. The boxplots show the cases where COMB identified the commits
di↵erently with the context metric NCCW, the change metrics, LA and the indenta-
tion metrics on RF and LR models. For instance, COMB-AB refers to the cases where
commits are identified as defective by COMB but are identified as clean by AB. The
x-axis shows the metrics that are compared; the y-axis shows the value of NCW.

(a) Bitcoin (b) Hadoop

Fig. 14: The values of LA for the commits identified as defective in Bitcoin project
and Hadoop project. The boxplots show the cases where COMB identified the com-
mits di↵erently with the context metric NCCW, the change metrics, LA and the in-
dentation metrics on LR model. The y-axis shows the value of LA.

median LA value of COMB-LA is higher than the median LA value of LA-COMB,
while LA-COMB has higher median LA value in Hadoop project. This result implies
that the result in Figure 13(a) and 13(b) indicates that COMB can uniquely identify
some defective commits.

The proposed context metrics NCW and NCKW, and the extended context
metrics NCCW and NCCKW can uniquely identify defective commits; and these
commits tend to have larger context lines than other churn metrics on the LR
model.

36

The Impact of Context Metrics on Just-In-Time Defect Prediction 37

We observe the same tendency for the other context metrics on LR model, but
not RF model. This result may be from the di↵erence between RF and LR models.
To study the di↵erence between the prediction models lies beyond the scope of this
paper. In addition, there exist commits that the traditional code churn metrics can
identify that the context metrics cannot. Future studies are necessary to investigate
these points.

8.2 How much do the indentation metrics improve the defect prediction
performance?

Indentation metrics AS and AB have the potential to imporve defect prediction
performance.

Our study is the first applying the indentation metrics to the defect prediction
problem. From our results, the indentation metrics are one of the best metrics on
defect prediction perfomances, and significantly outperform other studied metrics
without COMB. Hence, we observe that the indentation metrics have the potential of
predicting power for just-in-time defect prediction.

8.3 How redundant are the context metrics compared to the traditional metrics?

8.3.1 Motivation:

To our knowledge, prior work in defect prediction disregards information around the
changed lines, context lines. Hence, we propose the context metrics, and study the
impact of them in the defect prediction performance. However, we did not study the
redundancy of our context metrics compared to the traditional metrics.

We present an in-depth analysis to understand the relation between our context
metrics and the traditional metrics. This result produces insights of why our context
metrics are not inducing redundancy, and why the context metrics can uniquely iden-
tify defective commits compared to the traditional metrics. Finally, we show the basic
predicting power using information gain [46].

8.3.2 Approach:

We first study five context metrics (i.e., NCW, NCKW, NCCW, NCCKW, and go-
toNCCKW7), two indentation metrics and 14 traditional change metrics based on a
correlation analysis [64] and the principal component analysis (PCA) [8] to identify
correlated metrics and find metrics that are important to represent the variance of
the original metrics. Second, we compute information gain [46] for all the studied
metrics in order to clarify the basic predicting power of the studied metrics.

We first conduct a correlation analysis on the metrics. When we use strongly
correlated metrics as explanation variables for a prediction model, we get the problem

7 COMB are two context metrics NCCW and gotoNCCKW. Hence, we study NCCW and gotoNCCKW
instead of COMB.

37

38 Kondo et al.

of multicollinearity [9]. In addition, these metrics are redundant. We use Spearman
rank correlation [64] to measure the correlation between the metrics. Spearman rank
correlation is a non-parametric correlation. We apply Spearman rank correlation to all
commits on each studied project. We compute the average values of the correlation
coe�cients between the projects.

Second, we conduct the PCA in order to identify metrics which represent the
highest variance of all the studied metrics. The PCA result shows which metrics can
represent the variance of all the studied metrics. The PCA reduces the number of
input metrics and makes new metrics. Then, the PCA shows the coe�cient8 for every
new metric to convert the input metrics into the new metric. We use the coe�cient
of the most important new metric called the first principal component9 to identify
which metrics represent the highest variance10. We apply the PCA to all commits on
each studied project. We suppose that metrics which represent the highest variance
are important metrics in the studied metrics.

Finally, we compute information gain [46] in order to clarify the basic predict-
ing power of the studied metrics. In our case, information gain measures the basic
predicting power of each of the metrics. For example, if an original metric perfectly
separates defective commits and clean commits, the value of information gain would
be maximum. However, if an original metric separates all the commits to 50% de-
fective commits and 50% clean commits, the value of information gain would be
minimum because this prediction is the same as random classification. The formula
of information gain [46] is as follows:

InfoGain(metric) = H(Defect) + H(metric) � H(Defect,metric),

where metric is a certain studied metric, InfoGain(·) is the information gain of ·
(metric), H(·) is Shannon entropy [48] of · where the base of the logarithm is 2,
H(·, ·0) is Shannon entropy of · after classifying by ·0, Defect is the set of all commits
with prediction results (defective or clean).

We compute the ratio of the information gain between NCCW, and the indentation
metrics and the churn metrics. Since NCCW is our proposed metric, we use NCCW
as a base. The formulation is as follows:

Ratio = InfoGain(NCCW)/InfoGain(·),

If the ratio is over 1.0 when using a certain original metric, NCCW has high potential
to classify the commits in defect prediction rather than the certain metric.

8.3.3 Results:

The context metrics NCCW and NCCKW, the indentation metrics AI and AS,
and the change metric LA are strongly correlated.

8 Here, the coe�cient means the left-singular vector. We conduct the PCA using singular vector de-
composition.

9 The first principal component means the input metrics set that can very retain the original metrics
variance.

10 Metrics which represent higher variance of the studied metrics have higher coe�cient in the first
principal component.

38

The Impact of Context Metrics on Just-In-Time Defect Prediction 39

Table 12: Spearman rank correlation between the context metrics, the indentation
metrics, and the change metrics in the studied projects. GNCCKW indicates gotoN-
CCKW. We average correlations in the studied projects. Each cell shows the average
correlation. “*” refers to that at least one non statistical significant correlation in the
studied projects. Due to the space limitation, we omit the History and Experience of
the change metrics in this paper. These metrics are not strongly correlated (0.7 and
over) with the other metrics (except for the correlation between EXP and SEXP).

N
C

W

N
C

K
W

N
C

C
W

N
C

C
K

W

G
N

C
C

K
W

A
I

A
S

FI
X

N
S

N
D

N
F

En
tro

py

LA LD LT

NCW 1.00 0.75 0.80 0.72 0.06* 0.59 0.64 -0.08 0.24 0.50 0.65 0.61 0.64 0.60 -0.01*
NCKW 1.00 0.65 0.88 0.06* 0.58 0.61 -0.06* 0.20 0.39 0.51 0.47 0.54 0.53 0.10
NCCW 1.00 0.81 0.08* 0.84 0.90 -0.14 0.27 0.54 0.70 0.62 0.91 0.60 -0.07*
NCCKW 1.00 0.08* 0.76 0.79 -0.11 0.24 0.46 0.60 0.54 0.75 0.55 0.03*
GNCCKW 1.00 0.06* 0.07* -0.01* 0.04* 0.05* 0.07* 0.06* 0.08* 0.06* -0.03*

AI 1.00 0.92 -0.10 0.22 0.42 0.52 0.44 0.82 0.48 -0.02*
AS 1.00 -0.12 0.22 0.43 0.56 0.47 0.87 0.52 -0.02*

FIX 1.00 -0.05 -0.10* -0.14 -0.12 -0.16 -0.09 0.05*

NS 1.00 0.60 0.46 0.44 0.33 0.24 0.06*
ND 1.00 0.81 0.77 0.58 0.45 -0.04
NF 1.00 0.96 0.71 0.58 -0.09
Entropy 1.00 0.62 0.52 -0.08

LA 1.00 0.58 -0.08
LD 1.00 -0.00*
LT 1.00

Table 12 shows the Spearman rank correlation between all the studied metrics
(including the context, the indentation and the change metrics) in all studied projects;
each cell in the table shows the average correlation in the studied projects (the median
is very similar). A gray cell refers to the case of the strong correlation whose coef-
ficient is 0.7 and over. We observe that the correlations between NCCW, NCCKW,
AI, AS, and LA are strong (over 0.7). This is because the context metrics and the
indentation metrics include changed lines information.

The context metrics NCW and NCKW, however, are moderately correlated
to the indentation metrics and the change metric LA.

NCCW and NCCKW are extended metrics of NCW and NCKW. NCW and
NCKW are moderately correlated to AI, AS, and LA (less than 0.7). Hence, al-
though the context information have a similar concept with the indentation metrics
and changed lines, the context information is not redundant.

The context metrics NCCW and NCCKW are the metrics that represent the
highest variance of all the original metrics.

Table 13 shows the coe�cient of the first principal component for each project
in the PCA. A gray cell refers to the case with the absolute coe�cient 0.3 and over.
We observe that NCCW and NCCKW have over 0.3 absolute coe�cient in all the
studied projects. If the first principal component has a certain metric which has high
coe�cient in all the projects, this metric is likely to represent the highest variance of
all studied metrics in all the projects.

NCCW and NCCKW include the context information and have the strong cor-
relation to the indentation metrics and LA due to using changed line information.
Hence, NCCW and NCCKW can add the context information while having the in-

39

40 Kondo et al.

Table 13: The coe�cient of the first principal component for each project in the PCA.
GNCCKW indicates gotoNCCKW. Please see text for a full explanation.

Hadoop Camel Gerrit Osmand CMake Bitcoin Gimp

NCW -0.300 -0.264 -0.312 -0.237 -0.206 -0.297 -0.189
NCKW -0.295 -0.259 -0.289 -0.228 -0.201 -0.294 -0.180
NCCW -0.341 -0.345 -0.347 -0.411 -0.370 -0.366 -0.379
NCCKW -0.376 -0.346 -0.330 -0.410 -0.374 -0.376 -0.394
GNCCKW -0.040 0.002 -0.009 -0.199 -0.313 -0.039 -0.212
AI -0.282 -0.294 -0.266 -0.369 -0.357 -0.299 -0.263
AS -0.285 -0.294 -0.266 -0.381 -0.359 -0.309 -0.363
FIX 0.055 0.052 0.024 0.028 0.024 0.025 0.014
NS -0.135 -0.170 -0.232 -0.075 -0.100 -0.192 -0.167
ND -0.342 -0.277 -0.318 -0.129 -0.179 -0.249 -0.291
NF -0.299 -0.334 -0.301 -0.175 -0.282 -0.330 -0.268
Entropy -0.289 -0.277 -0.272 -0.117 -0.153 -0.279 -0.194
LA -0.210 -0.292 -0.136 -0.378 -0.317 -0.206 -0.359
LD -0.174 -0.175 -0.215 -0.094 -0.162 -0.078 -0.109
LT 0.114 0.021 0.031 -0.098 0.025 0.053 0.016
NDEV 0.009 -0.005 -0.006 -0.014 -0.025 0.006 0.095
AGE -0.018 -0.003 -0.007 -0.034 -0.037 -0.004 0.005
NUC -0.024 -0.194 -0.250 -0.052 -0.099 -0.161 -0.045
EXP -0.042 0.008 -0.011 -0.033 -0.003 -0.019 0.068
REXP 0.002 0.010 0.016 0.009 0.003 0.014 0.006
SEXP -0.039 0.027 -0.002 -0.022 0.021 -0.019 0.085

formation of the indentation metrics and LA. Hence, NCCW and NCCKW represent
the highest variance.

In summary, the context metrics NCW and NCKW are not redundant metrics,
and add the context information to the defect prediction model. While NCCW and
NCCKW have strong correlations to the indentation metrics and LA, NCCW and
NCCKW also add information from the context of the change.

Except for LT, NCCW has the strongest basic predicting power regarding
the information gain compared to other studied metrics.

Figure 15 shows the ratio of the information gain. We observe that all the median
values are grater than 1.0 except LT. Hence, almost all cases, the information gain of
NCCW is better than the other studied metrics. LT has better value of the information
gain. However, the prediction performance such as AUC is not good. In summary,
except for LT, NCCW has the strongest basic predicting power in the studied metrics.

8.4 Does the context size changes the complexity of change?

We argued that more words/keywords in a context, more complex a change is. Al-
though number of words/keywords are determined by the context size, we were con-
cerned about that the complexity is changed by the context size. In this discussion,
we explain that changing context size does not a↵ect the complexity of change.

From our experiments, given a fixed size of context, the number of words/key-
words in such context is a good indicator of the complexity of the change (RQ1).

40

The Impact of Context Metrics on Just-In-Time Defect Prediction 41

●

●

●

●

●

1

10

AI AS NS ND NFEntropyLA LD LT

R
at

io
 o

f i
nf

or
m

at
io

n
ga

in
 (l

og
 s

ca
le

)

Fig. 15: The ratio of the information gain between NCCW and other metrics. The
x-axis indicates the metrics that are used to compute the ratio; the y-axis indicates the
ratio. The dashed line indicates that the ratio is 1.0.

This is because as the context size increases, the number of context words/keywords
also increases; however, the distance of some words/keywords to the hunk will also
increase, making them less e↵ective as an indicator of complexity. Hence, a balance
is required: too small a context might not have enough information to capture the
context of the change, however a context that is too large will dilute the important
context information around a hunk.

8.5 How are the actual AUC and MCC values of the context metrics?

We study the ranks that were computed by the Scott-Knott ESD test across the studied
metrics to determine which are the best prediction metrics to use in defect prediction.
However, practitioners would concern about the actual AUC and MCC values since
practitioners need accurate prediction model.

We show the actual AUC and MCC values in Appendix (Table 18 and 19). From
the AUC result (Table 18), COMB provides at least 0.737. This value corresponds to
the strong e↵ect size according to prior work [45]. From the MCC result (Table 19),
COMB provides at least 0.3 except RF in the Camel project. This value corresponds
to the moderate correlation. Hence, we conclude that COMB can be used in practice
since they have acceptable prediction performance in the actual values as well.

41

42 Kondo et al.

8.6 Practical guides (recommendations) for the parameters of the context metrics

The context metrics have two tunable parameters: the context size, and the churn
type. We made our practical guides (recommendations) of optimizing the parameters
of the context metrics as applicable as possible to practitioners.

Recommendation 1: If practitioners have both, training data and validation
data, we recommend to optimize the context size and the churn type following
our experiments in RQ1. The most important parameters to determine are how
many context lines to use (we call this the context size) and what type of context
lines to use (we call this the churn type). In our study, we calculated the context size
and the churn type that yield the best results; we recommend that, if practitioners
have training data and validation data, they optimize the context size and the churn
type following our experiments in RQ1. Our experiments in RQ3 show that COMB
which are the combination metrics of the extended context metrics that are number
of words and number of “goto” keyword significantly outperform the other studied
metrics. Hence, if practitioners want to use our prediction model, we recommend to
use COMB. Practitioners do not need to decide using either number of keywords
or words as a parameter of the context metrics. COMB includes both of them. The
details of how to use COMB can be found in Section 8.7.

Recommendation 2: If practitioners do not have enough validation data, we
recommend to use the same parameters that we found perform best. Our exper-
iments in RQ1 show optimal values for the parameters for the projects we studied.
The studied projects cover multiple domains of software, and two popular program-
ming languages, C++ and Java. We believe this diversity of studied projects is likely
to make these parameters useful in general.

8.7 Practical guides (recommendation) for practitioners who want to use a defect
prediction model

We proposed the context metrics. We present recommendations of using them for
defect prediction according to the experimental results.

Recommendation 1: Use the indentation metric AS instead of the traditional
size metrics in the change metrics. Our experiments in RQ2 show that AS signif-
icantly outperforms the other studied metrics including traditional size metrics (LA,
LD and LT). In addition, AS is strongly correlated with the traditional size metric
LA which has the highest performance in the change (code churn) metrics. Hence,
using AS instead of the traditional size metrics allows practitioners to improve the
performance of their defect prediction models.

Recommendation 2: For the case where practitioners want to improve the
prediction performance using a simple prediction model, use the context met-
rics COMB on the logistic regression model. Our experiments in RQ3 show that
COMB are the best-performing metrics in AUC and MCC. In addition, our discus-
sion shows that: (1) a context metric used in COMB, NCCW, is one of the metric
that represents the highest variance of all the original metrics, and (2) the basic defect
predicting power of NCCW is strong. For the interpretation of the prediction model,

42

The Impact of Context Metrics on Just-In-Time Defect Prediction 43

Table 14: The median and 75 percentile (3Q) IQR values of the performance for
the context metrics, the indentation metric and the change metrics. An IQR value
is computed across all unit values for each prediction model for each project for
each metric. The median/3Q IQR values are computed for each metric. Hence, the
median/3Q for all prediction models and projects.

NCCW NCCKW COMB AS LA Changes
Median 3Q Median 3Q Median 3Q Median 3Q Median 3Q Median 3Q

AUC 0.011 0.016 0.012 0.015 0.008 0.014 0.010 0.013 0.009 0.013 0.015 0.017
MCC 0.015 0.026 0.019 0.022 0.024 0.028 0.019 0.021 0.022 0.030 0.032 0.037
Brier 0.004 0.007 0.004 0.009 0.009 0.010 0.004 0.008 0.005 0.007 0.005 0.006

COMB contains only two metrics (NCCW and gotoNCCKW), and therefore, we can
easily interpret the prediction results. Finally, the e↵ect size of the actual prediction
values in AUC is strong. Hence, for the case where practitioners want to improve the
prediction performance using a simple prediction model, using COMB might allow
practitioners to get good prediction performance with a simple prediction model.

9 Threats to Validity

9.1 Construct Validity

We follow the labeling process in Commit Guru [47] in order to label each commit
either defective or clean. SZZ algorithm is also a popular approach to identify de-
fective commits [52]; however, it has no open source implementation available. In
contrast, Commit Guru is a publicly available open source project. Hence, we follow
the labeling process in Commit Guru for its repeatability and openness.

We use the online change classification [54] to validate the performance of defect
prediction. This validation technique addresses the challenges of the cross validation
technique. Hence, we believe this validation technique is acceptable.

The online change classification has parameters. In particular, the unit (test inter-
val) is the most important parameter. Below, we studied the impact of the unit for the
performance in defect prediction. If the unit has strong impact for the performance in
defect prediction, we would need to consider the parameter in our experiments.

Approach: We build defect prediction models for NCCW, NCCKW, COMB,
AS, LA, and the change metrics. The prediction procedure is the almost same as
RQ2. The only di↵erence is that we change the unit value between 10 to 100 by
10. Finally, we report the evaluation measures by (1) plotting a line plot for each
project, prediction model, and studied metric, and (2) computing the median and 75
percentile IQR values of di↵erent unit values in all projects, prediction models, and
studied metrics.

Results: Figure 16 shows the values of the evaluation measures for di↵erent unit
values. We observe that all evaluation measures are stable for di↵erent unit values.
In addition, we observe the same tendency for other projects, prediction models, and
metrics.

43

44 Kondo et al.

● ● ●
●

● ●
●

● ●●

●
● ●

●

● ●
●

●
●

●

● ● ● ● ● ● ● ● ●●

0.00

0.25

0.50

0.75

1.00

10 20 30 40 50 60 70 80 90 100
Unit (Test interval)

Ev
al

ua
tio

n
m

ea
su

re
 v

al
ue

s
Eva AUC MCC Brier

Fig. 16: The values of the evaluation measures for each unit (test interval) using the
NCCW metric on LR model in the Camel project. Eva indicates evaluation measures.
The x-axis indicates the unit value between 10 to 100; the y-axis indicates the values
of the evaluation measures.

Table 14 shows the median and 75 percentile (3Q) IQR values for di↵erent unit
values in all projects, prediction models, and studied metrics. We observe that even
if we check 3Q values, they are less than 0.05 IQR value in all cases. Hence, the unit
(test interval) has little impact for the results. The training interval is decided by the
unit. Hence, the training interval also has little impact for the results.

9.2 External Validity

As the studied projects, we use six large open source software. These software are
written in the popular programming languages C++ and Java; and one of various
types of software, such as server and web application. These systems we study are
open source but not commercial software. In the future, we need to study the context
metrics, extended context metrics, and combination context metrics on commercial
projects for verifying our findings.

9.3 Internal Validity

We remove comments from the hunks. However, if all lines in a hunk are comments
and use “/**/”, we do not identify whether the hunks are comments.

44

The Impact of Context Metrics on Just-In-Time Defect Prediction 45

We use three evaluation measures, AUC, MCC and Brier score, which are not
a↵ected by skewed data [4, 62] and address the pitfalls in defect prediction [57].
Hence, we believe these measures are acceptable.

10 Conclusion

In this paper, we propose context metrics based on the context lines, the extended
context metrics based on both the context lines and changed lines as code churn
metrics, and COMB based on the extended context metrics. We study the impact of
considering the context lines for defect prediction. We compare the context metrics,
the extended context metrics, and COMB with the traditional code churn metrics in
six open source software. The main findings of our paper are as follows:

– The chunk type ‘+’ is the best parameter for context metrics for defect prediction.
This chunk type achieves the best median rank according to the three evaluation
measures, AUC, MCC and Brier score on the Scott-Knott ESD test.

– The small context size is suitable when considering the number of words, while
the large context size is suitable when considering the number of keywords in
context lines for defect prediction.

– “goto” statement in the context lines and the changed lines is the best keyword to
detect defective commits in the modified NCCKW.

– Our proposed combination metrics, COMB, significantly outperform all the met-
rics, and achieve the best-performing metrics in all of the studied projects in terms
of AUC and MCC.

Acknowledgment

This work was partially supported by NSERC Canada as well as JSPS KAKENHI
Japan (Grant Numbers: JP16K12415).

References

1. Aversano, L., Cerulo, L., Del Grosso, C.: Learning from bug-introducing changes
to prevent fault prone code. In: Proceedings of the 9th International Workshop
on Principles of Software Evolution (IWPSE), pp. 19–26. ACM (2007)

2. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design
metrics as quality indicators. IEEE Transactions on Software Engineering
22(10), 751–761 (1996)

3. Bettenburg, N., Nagappan, M., Hassan, A.E.: Think locally, act globally: Im-
proving defect and e↵ort prediction models. In: Proceedings of the 9th IEEE
Working Conference on Mining Software Repositories (MSR), pp. 60–69. IEEE
Press (2012)

4. Boughorbel, S., Jarray, F., El-Anbari, M.: Optimal classifier for imbalanced data
using matthews correlation coe�cient metric. PloS one 12(6), e0177,678 (2017)

45

46 Kondo et al.

5. Bowes, D., Hall, T., Gray, D.: Comparing the performance of fault prediction
models which report multiple performance measures: recomputing the confusion
matrix. In: Proceedings of the 8th International Conference on Predictive Models
in Software Engineering, pp. 109–118. ACM (2012)

6. Chicco, D.: Ten quick tips for machine learning in computational biology. Bio-
Data mining 10(1), 35 (2017)

7. Cohen, J.: Statistical power analysis for the behavioral sciences (1988)
8. D’Ambros, M., Lanza, M., Robbes, R.: An extensive comparison of bug pre-

diction approaches. In: Proceedings of the 7th Working Conference on Mining
Software Repositories (MSR), pp. 31–41. IEEE (2010)

9. Farrar, D.E., Glauber, R.R.: Multicollinearity in regression analysis: the problem
revisited. The Review of Economic and Statistics 49(1), 92–107 (1967)

10. Fukushima, T., Kamei, Y., McIntosh, S., Yamashita, K., Ubayashi, N.: An em-
pirical study of just-in-time defect prediction using cross-project models. In:
Proceedings of the 11th Working Conference on Mining Software Repositories
(MSR), pp. 172–181. ACM (2014)

11. Ghotra, B., McIntosh, S., Hassan, A.E.: Revisiting the impact of classification
techniques on the performance of defect prediction models. In: Proceedings of
the 37th International Conference on Software Engineering (ICSE), pp. 789–800.
IEEE Press (2015)

12. Graves, T.L., Karr, A.F., Marron, J.S., Siy, H.: Predicting fault incidence using
software change history. IEEE Transactions on software engineering 26(7), 653–
661 (2000)

13. Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature
review on fault prediction performance in software engineering. IEEE Transac-
tions on Software Engineering 38(6), 1276–1304 (2012)

14. Halstead, M.H.: Elements of software science. Elsevier New York (1977)
15. Han, J., Moraga, C.: The influence of the sigmoid function parameters on the

speed of backpropagation learning. In: Proceedings of the International Work-
shop on Artificial Neural Networks, pp. 195–201. Springer (1995)

16. Hassan, A.E.: Predicting faults using the complexity of code changes. In: Pro-
ceedings of the 31st International Conference on Software Engineering (ICSE),
pp. 78–88. IEEE (2009)

17. Hata, H., Mizuno, O., Kikuno, T.: Bug prediction based on fine-grained mod-
ule histories. In: Proceedings of the 34th International Conference on Software
Engineering (ICSE), pp. 200–210. IEEE (2012)

18. Hindle, A., Godfrey, M.W., Holt, R.C.: Reading beside the lines: Indentation as
a proxy for complexity metric. In: Proceedings of the 16th International Confer-
ence on Program Comprehension (ICPC), pp. 133–142. IEEE (2008)

19. Ho, T.K.: Random decision forests. In: Proceedings of the 3rd International
Conference on Document Analysis and Recognition, vol. 1, pp. 278–282. IEEE
(1995)

20. Jiang, T., Tan, L., Kim, S.: Personalized defect prediction. In: Proceedings of the
28th International Conference on Automated Software Engineering (ASE), pp.
279–289. IEEE (2013)

46

The Impact of Context Metrics on Just-In-Time Defect Prediction 47

21. Kamei, Y., Fukushima, T., McIntosh, S., Yamashita, K., Ubayashi, N., Hassan,
A.E.: Studying just-in-time defect prediction using cross-project models. Empir-
ical Software Engineering 21(5), 2072–2106 (2016)

22. Kamei, Y., Shihab, E., Adams, B., Hassan, A.E., Mockus, A., Sinha, A.,
Ubayashi, N.: A large-scale empirical study of just-in-time quality assurance.
IEEE Transactions on Software Engineering 39(6), 757–773 (2013)

23. Karunanithi, N.: A neural network approach for software reliability growth mod-
eling in the presence of code churn. In: Software Reliability Engineering, 1993.
Proceedings., Fourth International Symposium on, pp. 310–317. IEEE (1993)

24. Khoshgoftaar, T.M., Allen, E.B., Goel, N., Nandi, A., McMullan, J.: Detection
of software modules with high debug code churn in a very large legacy system.
In: Software Reliability Engineering, 1996. Proceedings., Seventh International
Symposium on, pp. 364–371. IEEE (1996)

25. Khoshgoftaar, T.M., Szabo, R.M.: Improving code churn predictions during the
system test and maintenance phases. In: ICSM, vol. 94, pp. 58–67 (1994)

26. Kim, S., Whitehead Jr, E.J.: How long did it take to fix bugs? In: Proceedings
of the 2006 international workshop on Mining software repositories (MSR), pp.
173–174. ACM (2006)

27. Kim, S., Whitehead Jr, E.J., Zhang, Y.: Classifying software changes: Clean or
buggy? IEEE Transactions on Software Engineering 34(2), 181–196 (2008)

28. Kim, S., Zhang, H., Wu, R., Gong, L.: Dealing with noise in defect prediction.
In: Proceedings of the 33th International Conference on Software Engineering
(ICSE), pp. 481–490. IEEE (2011)

29. Kim, S., Zimmermann, T., Whitehead Jr, E.J., Zeller, A.: Predicting faults from
cached history. In: Proceedings of the 29th International Conference on Software
Engineering (ICSE), pp. 489–498. IEEE (2007)

30. Lessmann, S., Baesens, B., Mues, C., Pietsch, S.: Benchmarking classification
models for software defect prediction: A proposed framework and novel findings.
IEEE Transactions on Software Engineering 34(4), 485–496 (2008)

31. Li, J., He, P., Zhu, J., Lyu, M.R.: Software defect prediction via convolutional
neural network. In: Proceedings of the 2017 Software Quality, Reliability and
Security (QRS), pp. 318–328. IEEE (2017)

32. McCabe, T.J.: A complexity measure. IEEE Transactions on software Engineer-
ing 2(4), 308–320 (1976)

33. McDonald, J.H.: Handbook of Biological Statistics (3rd ed.). Sparky House
Publishing, Baltimore, Maryland. (2014)

34. Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., Bener, A.: Defect pre-
diction from static code features: current results, limitations, new approaches.
Automated Software Engineering 17(4), 375–407 (2010)

35. Microsoft: Overview of c++ statements (2016). URL https://docs.
microsoft.com/ja-jp/cpp/cpp/overview-of-cpp-statements

36. Mizuno, O., Kikuno, T.: Training on errors experiment to detect fault-prone soft-
ware modules by spam filter. In: Proceedings of the 6th Joint Meeting on Foun-
dations of Software Engineering (ESEC/FSE), pp. 405–414. ACM (2007)

37. Mockus, A., Votta, L.G.: Identifying reasons for software changes using historic
databases. In: Proceedings of the 22th International Conference on Software

47

https://docs.microsoft.com/ja-jp/cpp/cpp/overview-of-cpp-statements
https://docs.microsoft.com/ja-jp/cpp/cpp/overview-of-cpp-statements

48 Kondo et al.

Maintenance (ICSE), pp. 120–130. IEEE (2000)
38. Moser, R., Pedrycz, W., Succi, G.: A comparative analysis of the e�ciency of

change metrics and static code attributes for defect prediction. In: Proceedings
of the 30th International Conference on Software Engineering (ICSE), pp. 181–
190. IEEE (2008)

39. Munson, J.C., Elbaum, S.G.: Code churn: A measure for estimating the impact
of code change. In: Software Maintenance, 1998. Proceedings., International
Conference on, pp. 24–31. IEEE (1998)

40. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system
defect density. In: Proceedings of the 27th international conference on Software
engineering, pp. 284–292. ACM (2005)

41. Ohlsson, M.C., Von Mayrhauser, A., McGuire, B., Wohlin, C.: Code decay anal-
ysis of legacy software through successive releases. In: Aerospace Conference,
1999. Proceedings. 1999 IEEE, vol. 5, pp. 69–81. IEEE (1999)

42. Oram, A., Wilson, G.: Making software: What really works, and why we believe
it. ” O’Reilly Media, Inc.” (2010)

43. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Where the bugs are. In: ACM SIGSOFT
Software Engineering Notes, vol. 29, pp. 86–96. ACM (2004)

44. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers (1993)

45. Rice, M.E., Harris, G.T.: Comparing e↵ect sizes in follow-up studies: Roc area,
cohen’s d, and r. Law and human behavior 29(5), 615–620 (2005)

46. Romanski, P., Kottho↵, L.: Fselector
47. Rosen, C., Grawi, B., Shihab, E.: Commit guru: Analytics and risk prediction of

software commits. In: Proceedings of the 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE, pp. 966–969. ACM (2015)

48. Shannon, C.E.: A mathematical theory of communication. Bell system technical
journal 27(3), 379–423 (1948)

49. Shepperd, M., Bowes, D., Hall, T.: Researcher bias: The use of machine learning
in software defect prediction. IEEE Transactions on Software Engineering 40(6),
603–616 (2014)

50. Shihab, E.: An exploration of challenges limiting pragmatic software defect pre-
diction. Ph.D. thesis, Queen’s University (Canada) (2012)

51. Shihab, E., Hassan, A.E., Adams, B., Jiang, Z.M.: An industrial study on the risk
of software changes. In: Proceedings of the 20th International Symposium on
the Foundations of Software Engineering (FSE), p. 62. ACM (2012)

52. Śliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? In:
Proceedings of the 2th International Workshop on Mining Software Repositories
(MSR), 4, pp. 1–5. ACM (2005)

53. Stevenson, A., Lindberg, C.A.: New Oxford American Dictionary. Oxford Uni-
versity Press (2010)

54. Tan, M., Tan, L., Dara, S., Mayeux, C.: Online defect prediction for imbalanced
data. In: Proceedings of the 37th International Conference on Software Engi-
neering (ICSE), pp. 99–108. IEEE (2015)

55. Tantithamthavorn, C., Hassan, A.E.: An experience report on defect modelling
in practice: Pitfalls and challenges. In: Proceedings of the 40th International

48

The Impact of Context Metrics on Just-In-Time Defect Prediction 49

Conference on Software Engineering: Software Engineering in Practice Track
(ICSE-SEIP18), p. To Appear (2018)

56. Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K.: Automated
parameter optimization of classification techniques for defect prediction models.
In: Proceedings of the 38th International Conference on Software Engineering
(ICSE), pp. 321–332. ACM (2016)

57. Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K.: An empirical
comparison of model validation techniques for defect prediction models. IEEE
Transactions on Software Engineering 43(1), 1–18 (2017)

58. Tassey, G.: The economic impacts of inadequate infrastructure for software test-
ing. National Institute of Standards and Technology (2002)

59. Thomas W., S.: lscp: A lightweight source code preprocesser (2015)
60. Wang, S., Liu, T., Tan, L.: Automatically learning semantic features for defect

prediction. In: Proceedings of the 38th International Conference on Software
Engineering (ICSE), pp. 297–308. ACM (2016)

61. Yang, X., Lo, D., Xia, X., Zhang, Y., Sun, J.: Deep learning for just-in-time
defect prediction. In: Proceedings of the 2015 Software Quality, Reliability and
Security (QRS), pp. 17–26. IEEE (2015)

62. Zhang, F., Zheng, Q., Zou, Y., Hassan, A.E.: Cross-project defect prediction us-
ing a connectivity-based unsupervised classifier. In: Proceedings of the 38th
International Conference on Software Engineering (ICSE), pp. 309–320. ACM
(2016)

63. Zimmermann, T., Premraj, R., Zeller, A.: Predicting defects for eclipse. In: Pro-
ceedings of the 3th International Workshop on Predictor Models in Software
Engineering (PROMISE), pp. 9–19. IEEE (2007)

64. Zwillinger, D., Kokoska, S.: CRC standard probability and statistics tables and
formulae. Crc Press (1999)

A Appendix

In this appendix, we show the actual values of the three evaluation measures corresponding to the results
of the rank in RQ1, RQ2, and RQ3. In addition, we show the correlation across the modified NCCKW.

49

50 Kondo et al.

Table 15: The median values of AUC for each context metric variant and studied
project. Each cell indicates the values of AUC by RF (left) and LR (right) models,
respectively, when the context size is three. The Scott-Knott ESD test is conducted
for each project (column).

Metrics Chunk Projects
Types Bitcoin Camel Gerrit Gimp Hadoop Osmand

+ 0.619/0.727 0.579/0.610 0.642/0.722 0.692/0.722 0.624/0.738 0.585/0.757
NCW - 0.580/0.663 0.548/0.561 0.594/0.655 0.619/0.672 0.636/0.690 0.567/0.695

all 0.631/0.707 0.577/0.598 0.624/0.707 0.647/0.715 0.638/0.737 0.587/0.749

+ 0.650/0.694 0.580/0.592 0.650/0.679 0.640/0.663 0.660/0.698 0.652/0.729
NCKW - 0.594/0.640 0.549/0.567 0.598/0.620 0.618/0.649 0.639/0.677 0.619/0.682

all 0.646/0.678 0.567/0.595 0.641/0.667 0.637/0.663 0.661/0.705 0.640/0.720

Table 16: The median values of MCC for each context metric variant and studied
project. Each cell indicates the values of MCC by RF (left) and LR (right) models,
respectively, when the context size is three. The Scott-Knott ESD test is conducted
for each project (column).

Metrics Chunk Projects
Types Bitcoin Camel Gerrit Gimp Hadoop Osmand

+ 0.130/0.269 0.090/0.178 0.170/0.316 0.203/0.268 0.156/0.361 0.118/0.415
NCW - 0.079/0.237 0.060/0.135 0.108/0.258 0.163/0.221 0.136/0.315 0.101/0.365

all 0.152/0.271 0.084/0.186 0.160/0.309 0.172/0.251 0.171/0.344 0.129/0.418

+ 0.228/0.238 0.106/0.135 0.216/0.268 0.191/0.211 0.260/0.311 0.238/0.346
NCKW - 0.178/0.232 0.093/0.135 0.168/0.234 0.185/0.199 0.201/0.297 0.227/0.309

all 0.199/0.213 0.118/0.128 0.233/0.270 0.190/0.233 0.261/0.296 0.239/0.343

Table 17: The median values of Brier score for each context metric variant and studied
project. Each cell indicates the values of Brier score by RF (left) and LR (right)
models, respectively, when the context size is three. The Scott-Knott ESD test is
conducted for each project (column).

Metrics Chunk Projects
Types Bitcoin Camel Gerrit Gimp Hadoop Osmand

+ 0.313/0.214 0.310/0.238 0.289/0.221 0.237/0.230 0.293/0.216 0.340/0.238
NCW - 0.307/0.229 0.316/0.243 0.321/0.239 0.237/0.236 0.295/0.223 0.331/0.241

all 0.311/0.215 0.334/0.239 0.302/0.223 0.242/0.231 0.293/0.217 0.332/0.238

+ 0.265/0.218 0.271/0.241 0.290/0.228 0.262/0.233 0.276/0.231 0.305/0.241
NCKW - 0.270/0.227 0.261/0.244 0.329/0.236 0.247/0.237 0.266/0.233 0.332/0.243

all 0.286/0.218 0.274/0.241 0.289/0.228 0.252/0.234 0.265/0.230 0.319/0.242

50

The Impact of Context Metrics on Just-In-Time Defect Prediction 51

Table 18: The median values of AUC for each context metric, each extended context
metric, COMB, each indentation metric, the change metrics and each of the change
metrics. Each cell indicates the values of AUC by RF (left) and LR (right) models,
respectively.

Metric Metrics Projects
Types Bitcoin Camel Gerrit Gimp Hadoop Osmand

NCW(c,1,+) 0.653/0.709 0.573/0.597 0.660/0.719 0.662/0.706 0.642/0.736 0.628/0.758
NCKW(c,10,+) 0.648/0.695 0.576/0.599 0.643/0.679 0.675/0.689 0.684/0.716 0.628/0.744

Context NCCW(c,1,+) 0.706/0.798 0.640/0.738 0.699/0.786 0.699/0.762 0.660/0.780 0.625/0.751
NCCKW(c,10,+) 0.689/0.754 0.628/0.682 0.677/0.735 0.699/0.723 0.691/0.769 0.660/0.758

COMB 0.750/0.798 0.741/0.738 0.771/0.786 0.743/0.768 0.765/0.780 0.737/0.751

Indentation AS 0.735/0.780 0.675/0.739 0.742/0.785 0.693/0.737 0.682/0.763 0.636/0.749
AB 0.734/0.739 0.667/0.733 0.720/0.775 0.692/0.689 0.693/0.754 0.614/0.750

Changes 0.706/0.670 0.708/0.668 0.694/0.666 0.677/0.574 0.733/0.732 0.645/0.634
NS 0.525/0.526 0.546/0.548 0.597/0.599 0.539/0.540 0.525/0.529 0.519/0.530
ND 0.608/0.607 0.666/0.679 0.647/0.659 0.582/0.595 0.695/0.711 0.624/0.649

Traditional NF 0.638/0.660 0.661/0.692 0.673/0.699 0.623/0.650 0.711/0.740 0.636/0.689
Entropy 0.633/0.651 0.648/0.678 0.667/0.694 0.641/0.633 0.649/0.703 0.638/0.689

LA 0.730/0.750 0.681/0.744 0.700/0.775 0.717/0.755 0.680/0.777 0.663/0.730
LD 0.560/0.606 0.568/0.587 0.617/0.670 0.651/0.677 0.665/0.686 0.594/0.668
LT 0.487/0.522 0.512/0.506 0.487/0.466 0.523/0.499 0.589/0.696 0.500/0.521

Table 19: The median values of MCC for each context metric, each extended context
metric, COMB, each indentation metric, the change metrics and each of the change
metrics. Each cell indicates the values of MCC by RF (left) and LR (right) models,
respectively.

Metric Metrics Projects
Types Bitcoin Camel Gerrit Gimp Hadoop Osmand

NCW(c,1,+) 0.178/0.279 0.115/0.171 0.212/0.323 0.172/0.235 0.200/0.348 0.228/0.404
NCKW(c,10,+) 0.205/0.333 0.111/0.170 0.181/0.284 0.230/0.244 0.243/0.329 0.193/0.366

Context NCCW(c,1,+) 0.229/0.343 0.167/0.309 0.253/0.408 0.197/0.308 0.189/0.402 0.185/0.373
NCCKW(c,10,+) 0.249/0.346 0.155/0.251 0.279/0.343 0.251/0.286 0.263/0.388 0.274/0.370

COMB 0.385/0.330 0.298/0.326 0.397/0.401 0.305/0.308 0.381/0.402 0.390/0.366

Indentation AS 0.302/0.398 0.183/0.286 0.311/0.385 0.194/0.264 0.235/0.378 0.198/0.336
AB 0.268/0.377 0.173/0.277 0.293/0.354 0.231/0.278 0.213/0.366 0.177/0.349

Changes 0.257/0.186 0.207/0.185 0.288/0.245 0.189/0.094 0.309/0.362 0.223/0.134
NS 0.000/0.112 0.111/0.111 0.181/0.202 0.121/0.117 0.097/0.074 0.062/0.112
ND 0.175/0.175 0.231/0.204 0.255/0.262 0.138/0.118 0.254/0.315 0.203/0.267

Traditional NF 0.156/0.248 0.235/0.234 0.288/0.299 0.211/0.240 0.313/0.336 0.262/0.265
Entropy 0.168/0.209 0.130/0.193 0.228/0.291 0.135/0.169 0.166/0.321 0.215/0.239

LA 0.296/0.277 0.214/0.269 0.281/0.345 0.263/0.279 0.226/0.363 0.245/0.329
LD 0.132/0.220 0.081/0.143 0.168/0.239 0.183/0.170 0.236/0.233 0.142/0.282
LT 0.086/0.074 0.065/0.049 0.049/0.073 0.071/0.000 0.125/0.288 0.073/0.068

51

52 Kondo et al.

Table 20: The median values of Brier score for each context metric, each extended
context metric, COMB, each indentation metric, the change metrics and each of the
change metrics. Each cell indicates the values of Brier score by RF (left) and LR
(right) models, respectively.

Metric Metrics Projects
Types Bitcoin Camel Gerrit Gimp Hadoop Osmand

NCW(c,1,+) 0.278/0.215 0.295/0.239 0.279/0.221 0.239/0.234 0.274/0.217 0.321/0.237
NCKW(c,10,+) 0.270/0.216 0.281/0.241 0.285/0.224 0.234/0.235 0.255/0.225 0.298/0.239

Context NCCW(c,1,+) 0.257/0.200 0.277/0.223 0.250/0.208 0.236/0.220 0.294/0.210 0.295/0.236
NCCKW(c,10,+) 0.245/0.203 0.268/0.230 0.262/0.213 0.227/0.231 0.260/0.219 0.289/0.239

COMB 0.225/0.210 0.285/0.224 0.221/0.209 0.190/0.226 0.245/0.226 0.237/0.239

Indentation AS 0.228/0.198 0.258/0.226 0.233/0.210 0.246/0.229 0.279/0.220 0.295/0.239
AB 0.238/0.214 0.264/0.227 0.250/0.210 0.240/0.250 0.283/0.218 0.294/0.240

Changes 0.201/0.202 0.186/0.192 0.207/0.215 0.169/0.171 0.189/0.194 0.239/0.246
NS 0.276/0.248 0.273/0.242 0.360/0.236 0.211/0.199 0.268/0.248 0.289/0.249
ND 0.275/0.243 0.289/0.232 0.309/0.229 0.236/0.216 0.279/0.221 0.343/0.243

Traditional NF 0.314/0.234 0.295/0.232 0.295/0.236 0.230/0.235 0.257/0.227 0.337/0.243
Entropy 0.273/0.231 0.275/0.223 0.282/0.220 0.221/0.214 0.288/0.217 0.337/0.234

LA 0.226/0.249 0.258/0.228 0.243/0.224 0.211/0.235 0.266/0.239 0.284/0.244
LD 0.311/0.249 0.288/0.247 0.298/0.246 0.235/0.246 0.258/0.246 0.329/0.247
LT 0.363/0.248 0.374/0.247 0.383/0.250 0.359/0.247 0.320/0.206 0.383/0.250

52

The Impact of Context Metrics on Just-In-Time Defect Prediction 53
Ta

bl
e

21
:S

pe
ar

m
an

ra
nk

co
rr

el
at

io
n

be
tw

ee
n

N
C

C
W

an
d

m
od

ifi
ed

N
C

C
K

W
si

n
th

e
st

ud
ie

d
pr

oj
ec

ts
.W

e
av

er
ag

e
co

rr
el

at
io

ns
in

th
e

st
ud

ie
d

pr
oj

ec
ts

.E
ac

h
ce

ll
sh

ow
st

he
av

er
ag

e
co

rr
el

at
io

n.
“*

”
re

fe
rs

to
th

at
at

le
as

to
ne

no
n

st
at

is
tic

al
si

gn
ifi

ca
nt

co
rr

el
at

io
n

in
th

e
st

ud
ie

d
pr

oj
ec

ts
.

“l
ea

ve
”

st
at

em
en

th
as

‘n
an

’
fo

r
al

lc
el

ls
.T

hi
s

is
be

ca
us

e
th

at
th

er
e

do
es

no
te

xi
st

“l
ea

ve
”

st
at

em
en

ti
n

th
e

G
er

rit
pr

oj
ec

t.
Sp

ea
rm

an
ra

nk
co

rr
el

at
io

n
ne

ed
st

o
co

m
pu

te
th

e
va

ria
nc

e
fo

rt
he

de
no

m
in

at
or

of
its

fo
rm

ul
at

io
n.

In
th

is
ca

se
,a

ll
va

lu
es

ar
e

ze
ro

,a
nd

th
er

ef
or

e,
va

ria
nc

e
is

al
so

ze
ro

.H
en

ce
,w

e
go

tt
he

ze
ro

di
vi

si
on

er
ro

r,
an

d
th

e
va

lu
e

is
‘n

an
’.

W
e

ob
se

rv
ed

th
at

th
e

co
rr

el
at

io
n

va
lu

es
ar

e
no

ts
tro

ng
in

th
e

ot
he

r
pr

oj
ec

ts
fo

r“
le

av
e”

st
at

em
en

t.

N
C

C
W

br
ea

k
ca

se
ca

tc
h

co
nt

in
ue

de
fa

ul
t

do
el

se
ex

ce
pt

fo
r

go
to

fin
al

ly
if

ex
is

ts
no

t
le

av
e

re
tu

rn
sw

itc
h

th
ro

w
try

w
hi

le

N
C

C
W

1.
00

0
0.

37
1

0.
37

4
0.

30
6

0.
26

1
0.

45
5

0.
31

3
0.

56
0

0.
06

1
0.

59
0

0.
07

6*
0.

19
7*

0.
71

9
0.

22
5

0.
45

6
na

n
0.

70
9

0.
25

9*
0.

31
6

0.
36

8
0.

34
9

br
ea

k
1.

00
0

0.
54

8
0.

18
8

0.
25

7
0.

34
2

0.
20

7
0.

34
0

0.
04

0*
0.

34
9

0.
08

8*
0.

11
2*

0.
39

7
0.

12
7

0.
24

1
na

n*
0.

33
8

0.
50

5
0.

18
4

0.
20

8
0.

34
0

ca
se

1.
00

0
0.

15
9

0.
17

2
0.

35
2

0.
18

7
0.

30
9

0.
03

8*
0.

30
0

0.
07

6*
0.

11
8

0.
34

1
0.

12
7

0.
24

6
na

n*
0.

33
9

0.
59

7
0.

18
2

0.
18

1
0.

22
1

ca
tc

h
1.

00
0

0.
18

6
0.

19
4

0.
18

6*
0.

24
7

0.
03

8*
0.

27
2

0.
02

3*
0.

28
2

0.
31

0
0.

19
4

0.
29

3
na

n*
0.

29
9

0.
12

6
0.

44
3

0.
59

6
0.

25
1

co
nt

in
ue

1.
00

0
0.

17
1

0.
16

7
0.

25
6

0.
02

7*
0.

31
5

0.
05

4*
0.

11
0*

0.
31

8
0.

13
5

0.
21

4
na

n*
0.

23
8

0.
13

9
0.

17
1

0.
21

9
0.

26
5

de
fa

ul
t

1.
00

0
0.

22
8

0.
32

8
0.

06
9*

0.
35

3
0.

05
1*

0.
12

6*
0.

38
9

0.
13

6
0.

30
6

na
n

0.
37

3
0.

30
5

0.
20

7
0.

23
2

0.
21

1
do

1.
00

0
0.

24
9

0.
05

2*
0.

26
8

0.
07

7*
0.

15
4

0.
29

9
0.

14
2

0.
28

0
na

n*
0.

28
3

0.
14

9
0.

17
5

0.
22

5
0.

24
3

el
se

1.
00

0
0.

04
2*

0.
43

9
0.

07
5*

0.
15

9*
0.

71
8

0.
18

8
0.

34
7

na
n

0.
52

7
0.

23
2

0.
26

1
0.

28
6

0.
31

9
ex

ce
pt

1.
00

0
0.

06
6

0.
03

5*
0.

08
3*

0.
05

0*
0.

06
5*

0.
06

6
na

n*
0.

05
3*

0.
03

3*
0.

04
5*

0.
04

8*
0.

04
8*

fo
r

1.
00

0
0.

05
4*

0.
18

1*
0.

58
3

0.
18

7
0.

37
7

na
n

0.
48

9
0.

24
2

0.
27

7
0.

32
6

0.
33

4
go

to
1.

00
0

0.
01

6*
0.

08
3*

0.
03

7*
0.

06
6*

na
n*

0.
06

8*
0.

07
8*

0.
02

2*
0.

03
2*

0.
07

0*
fin

al
ly

1.
00

0
0.

20
1*

0.
16

6*
0.

18
6

na
n*

0.
17

5*
0.

08
5*

0.
21

2
0.

31
0

0.
17

0
if

1.
00

0
0.

23
9

0.
42

7
na

n
0.

69
8

0.
26

5
0.

33
9

0.
36

9
0.

38
1

ex
is

ts
1.

00
0

0.
23

6
na

n*
0.

20
9

0.
08

0
0.

16
7*

0.
23

4
0.

17
5

no
t

1.
00

0
na

n
0.

39
6

0.
17

6
0.

32
6

0.
34

0
0.

24
1

le
av

e
na

n
na

n
na

n*
na

n*
na

n
na

n*
re

tu
rn

1.
00

0
0.

25
2*

0.
30

5
0.

34
5

0.
33

2
sw

itc
h

1.
00

0
0.

13
9

0.
13

9
0.

18
4

th
ro

w
1.

00
0

0.
35

4
0.

21
6

try
1.

00
0

0.
27

7
w

hi
le

1.
00

0

53

	1 Introduction
	2 Motivating Example
	3 Related Work
	4 Context Metrics
	5 Case Study Design
	6 Research Questions and Methodology
	7 Case Study Results
	8 Discussion
	9 Threats to Validity
	10 Conclusion
	A Appendix

