
Noname manuscript No.
(will be inserted by the editor)

An Empirical Study of Issue-Link Algorithms: Which
Issue-Link Algorithms Should We Use?

Masanari Kondo · Yutaro Kashiwa · Yasutaka
Kamei · Osamu Mizuno

the date of receipt and acceptance should be inserted later

Abstract The accuracy of the SZZ algorithm is pivotal for just-in-time defect predic-
tion because most prior studies have used the SZZ algorithm to detect defect-inducing
commits to construct and evaluate their defect prediction models. The SZZ algorithm
has two phases to detect defect-inducing commits: (1) linking issue reports in an
issue-tracking system to possible defect-fixing commits in a version control system by
using an issue-link algorithm (ILA); and (2) tracing the modifications of defect-fixing
commits back to possible defect-inducing commits. Researchers and practitioners can
address the second phase by using existing solutions such as a tool called cregit. In
contrast, although various ILAs have been proposed for the first phase, no large-scale
studies exist in which such ILAs are evaluated under the same experimental condi-
tions. Hence, we still have no conclusions regarding the best-performing ILA for the
first phase. In this paper, we compare 10 ILAs collected from our systematic literature
study with regards to the accuracy of detecting defect-fixing commits. In addition, we
compare the defect prediction performance of ILAs and their combinations that can
detect defect-fixing commits accurately. We conducted experiments on five open-
source software projects. We found that all ILAs and their combinations prevented
the defect prediction model from being affected by missing defect-fixing commits.
In particular, the combination of a natural language text similarity approach, Phan-
tom heuristics, a random forest approach, and a support vector machine approach is
the best way to statistically significantly reduced the absolute differences from the

Masanari Kondo, Yutaro Kashiwa, Yasutaka Kamei
Principles of Software Languages group (POSL)
Kyushu University, Japan
E-mail: {kondo, kamei, kashiwa}@ait.kyushu-u.ac.jp

Osamu Mizuno
Software Engineering Laboratory (SEL)
Kyoto Institute of Technology, Japan
E-mail: o-mizuno@kit.ac.jp



2 Kondo et al.

ground-truth defect prediction performance. We summarized the guidelines to use
ILAs as our recommendations.

1 Introduction

Just-in-time defect prediction models help in identifying whether a commit (i.e.,
source code changes) is likely to be defective [39]. A just-in-time defect predic-
tion model has several advantages compared with traditional file/package-level de-
fect prediction models [39, 48, 50]; for example, it can provide faster feedback.
Hence, numerous prior studies have investigated just-in-time defect prediction mod-
els [29, 37, 39, 41, 48, 50, 75, 86].

The SZZ algorithm [69] is a de facto standard algorithm to prepare a dataset to
construct and evaluate a just-in-time defect prediction model. The key concept is to
link issue reports corresponding to defects and commits that fixed such defects. Such
linked commits (a.k.a. defect-fixing commits) are used to identify commits that in-
duced changes that needed to be fixed (a.k.a. defect-inducing commits). Researchers
and practitioners usually use such defect-inducing commits to construct a defect pre-
diction model and evaluate it in terms of the accuracy of predicting defect-inducing
commits.

Hence, the accuracy of the SZZ algorithm may affect the reliability of the evalua-
tion of defect prediction performance. For example, Bird et al. [16] reported that the
defect-fixing commits linked with issue reports are biased; such biased defect-fixing
commits result in underperformance in defect prediction. Kim et al. [42] reported that
defect prediction models are durable to the false-positive/negative defect-inducing
commits up to a certain threshold (20%), though those over the threshold have a sig-
nificant effect on prediction performance.

Nowadays, the SZZ algorithm can detect defect-inducing commits accurately
with existing solutions [30, 36, 53, 56]; however, even if we use such solutions, false-
positive/negative defect-fixing commits may induce false-positive/negative defect-
inducing commits. Hence, the SZZ algorithm needs an implementation to detect
defect-fixing commits accurately.

To improve the accuracy of detecting defect-fixing commits, many prior studies
have proposed various issue-link algorithms (ILAs) that use several criteria to detect
defect-fixing commits [10, 12, 17, 18, 26, 49, 55, 63, 69, 71–74, 82, 84, 85]. For
example, Wu et al. [84] proposed an ILA called ReLink. This approach uses three
criteria: (1) the difference between the resolved dates of issue reports and the dates of
commits; (2) the consistency of developers; and (3) text similarity.

However, two challenges remain in prior studies: dataset inconsistency and small
comparisons. More specifically, prior studies evaluated their ILAs on different datasets
(data inconsistency). In addition, they overlooked the comparison across their pro-
posed ILAs with the majority of prior ILAs. To present the effectiveness of their
proposed ILAs (state-of-the-art approaches), they only compared their ILAs with a
few conventional ones (small comparisons). We discuss the details in Section 3.3.
Owing to these two challenges, it is difficult to conclude the best-performing ILA in

2



An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 3

terms of the accuracy of detecting defect-fixing commits and the impact to the defect
prediction performance.

In this paper, we compared all criteria that were used by the previous ILAs as
our ILAs and their combinations on the same dataset. As we divided the previous
ILAs into some criteria, our comparison covers not only previous ILAs, but also
other combinations. More specifically, we compared 10 criteria as our ILAs (i.e.,
time filtering, natural language text similarity, natural language text similarity with
word association, message generation from source code, loners heuristics, phantom
heuristics, modified text files, PU learning, random forest, and support vector ma-
chine) in terms of the accuracy of detecting defect-fixing commits. To collect these
ILAs, we conducted a systematic literature study with the snowballing approach [83].
In addition, we investigated the impact of the ILAs and their combinations to defect
prediction performance in terms of the absolute differences to the ground-truth de-
fect prediction performance. The ground-truth defect prediction performance is mea-
sured in the dataset where almost all defect-fixing commits are already detected ac-
curately. The details of such datasets and defect-fixing commits are discussed in Sec-
tion 5.1. We conducted our experiments on five open-source software projects from
the Apache Software Foundation: the Avro [3], Tez [7], ZooKeeper [8], Chukwa [4],
and Knox [6] projects.

Our ultimate goal is to clarify which ILA or combination of ILAs detects the most
defect-fixing commits and prevents the defect prediction model from being affected
by missing defect-fixing commits compared with the baseline ILA (i.e., used by the
SZZ algorithm) called the keyword extraction. To achieve this goal, we investigated
the following two research questions.

RQ1: Which issue-link algorithm is the best to detect defect-fixing commits?
Motivation: Many prior studies have proposed ILAs to detect defect-fixing
commits accurately. However, no studies have conducted a large empirical
comparison across ILAs. In this RQ, we compared 10 ILAs. Our goal is to
identify ILAs that detect defect-fixing commits accurately.
Results: The time filtering approach and the natural language text similarity
approach recovered the statistically significantly largest number of missing
defect-fixing commits compared with the other ILAs in different projects. The
random forest approach achieved the statistically significant highest precision
in 22 out of 25 results.

RQ2: Which issue-link algorithm is the best to prevent a defect prediction model
from being affected by missing defect-fixing commits in defect prediction?
Motivation: Researchers and practitioners should carefully select an ILA if
ILAs prevent a defect prediction model from being affected by missing defect-
fixing commits. In this RQ, we studied how ILAs and their combinations affect
defect prediction performance.
Results: All ILAs including the combinations of ILAs that detect defect-fixing
commits accurately result in a statistically significant reduction in the impact
to defect prediction performance compared with the baseline ILA, the keyword
extraction approach. These ILAs are robust to the datasets including missing
defect-fixing commits. In particular, the combination of the natural language

3



4 Kondo et al.

text similarity, Phantom heuristics, random forest, and support vector machine
approaches is the best method to prevent the defect prediction performance
from being affected by missing defect-fixing commits.

Our results provide researchers and practitioners who study/use defect prediction
or investigate defect-fixing commits with guidelines to choose the best ILA for their
purpose. We recommend using the combination of the natural language text similar-
ity, Phantom heuristics, random forest, and support vector machine approaches to re-
move the bias of missing defect-fixing commits on defect prediction performance. If
researchers and practitioners want to investigate defect-fixing commits on a dataset in
which no false-positive defect-fixing commits exist, we recommend using the random
forest approach. If researchers and practitioners need more defect-fixing commits to
investigate while allowing false-positive defect-fixing commits, we recommend us-
ing the time filtering or natural language text similarity approach. In addition, before
using any ILAs, we recommend using the dates of the commit and the issue report to
remove noise of defect-fixing commits for defect prediction.

The four main contributions of this paper are as follows:

– We have conducted the first large-scale empirical study to evaluate the ILAs on
the same experimental setup.

– We have proposed guidelines for the use of ILAs according to the purpose of each
study.

– We have implemented all the studied ILAs that were collected by our systematic
literature study [45].

– We have conducted a systematic literature study of the ILAs.

We summarized our ILAs and the validation technique in defect prediction as
Python packages [45, 46]. In addition, we made the replication package [44]. These
packages can be used to replicate/update our experiment.

The organization of our paper is as follows. Section 2 presents a motivating ex-
ample. Section 3 introduces related work and contextualize our research. Section 4
presents the experimental design. Section 5 presents our methodology. We also ex-
plain our studied ILAs in this section. Section 6 presents the results of our experiment.
Section 7 discusses these results. Section 8 describes the threats to the validity of our
findings. Section 9 presents the conclusion.

2 Motivating Example

2.1 Defect Prediction and ILAs

Firstly, an overview of just-in-time defect prediction and ILAs is depicted in Figure 1.
For more details, prior studies such as the study by Kamei et al. [38] may be referred
to. Defect prediction mainly consists of three phases: the data preparation phase, the
model construction phase, and the evaluation phase.

Data Preparation: This phase prepares the data for defect prediction. The data are
(1) software entities (e.g., commits) that are the target of the prediction, (2) the la-
bel that indicates whether entities include defects (i.e., defect-inducing entities), and

4



An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 5

Link issue

reports and


changes/commits

Issue

tracking

system

Version

control

system


((1) software

entities)

Detect defect-

inducing changes/

commits ((2) label)

Measure the 

characteristics

as (3) metrics

Metrics

extractor

ILA CLA

Prepare 
validation data

Preprocess

metrics

(6)

Model validation


technique
(4) Modeling

technique

(5)

Preprocessing


technique

Evaluate

prediction


model

(8)

Statistical test


Effect size

(7) Evaluation

measures

Construct

prediction


model

Data Preparation Phase Evaluation PhaseModel Construction Phase

Fig. 1: Overview of just-in-time defect prediction and ILAs.

(3) the metrics that measure the characteristics of entities such as the change met-
rics [39]. To prepare the label, researchers use two techniques: ILAs and commit-link
algorithms (CLAs). ILAs link issue reports to software entities, whereas CLAs find
entities that induce defects from entities that are linked to issue reports related to de-
fects (e.g., the SZZ algorithm [69]). All data are collected from two data sources: the
issue tracking system (e.g., JIRA) and the version control system (e.g., GitHub).

Model Construction: This phase constructs defect prediction models based on the
data that are prepared in the previous phase. To construct the prediction model,
researchers need to select (4) modeling techniques (e.g., logistic regression), (5)
preprocessing techniques (e.g., z-score), and (6) model validation techniques (e.g.,
bootstrap-sampling).

First, researchers need to select modeling techniques for defect prediction. Based
on the selected modeling techniques, the preprocessing techniques must be decided.
Usually, the z-score approach [47] is utilized. However, according to the require-
ments of the selected modeling techniques, we might choose another preprocessing
technique such as the min-max scaling approach [47].

The model validation technique divides the data into the training data and the test
data to improve the validity of the evaluation of the prediction models. One technique
needs to be selected from the various existing model validation techniques (e.g., boot-
strap sampling).

Finally, we construct defect prediction models based on the selected modeling
techniques, preprocessing techniques, and model validation techniques.

Evaluation: This final phase evaluates the constructed defect prediction model. Sim-
ilar to validation techniques, various (7) evaluation measures also exist. Researchers
usually evaluate the prediction performance such as precision, recall, and F1-score.
In addition, cost-aware evaluation measures are utilized (e.g., Norm(Popt)). To evalu-
ate the applicability of defect prediction models to practical scenarios, the execution
time might also be evaluated. To evaluate the difference across prediction models, (8)
the statistical test (e.g., the Scott-Knott ESD test [80]) and the effect size (e.g., the
Cohen’s d effect size [20]) are computed.

5



6 Kondo et al.

ILAs studied in this paper are utilized in the data preparation phase. In particular,
ILAs link the issue reports extracted from the issue tracking system to the commit-
s/changes extracted from the version control system to prepare the label. This in-
dicates that ILAs are applied as the first step in defect prediction. Hence, ILAs are
important because the accuracy of the links (i.e., the label) affects all the phases. Our
study will support the improvement of the accuracy of links and improve the reliabil-
ity of the defect prediction research.

2.2 Do ILAs Affect Defect Prediction?

In Section 2.1, we introduce the accuracy of ILAs is important for defect prediction.
Our next questions are that are existing ILAs inaccurate and do such ILAs affect
defect prediction? If so, that should be the motivation for our study. In this section, to
answer these questions, we introduce false-positive and false-negative defect-fixing
commits induced by the most popular ILA, and show a simple survey that clarifies
do ILAs affect defect prediction.

False-positive defect-fixing commits indicate defect-fixing commits that are linked
with unrelated issue reports while false-negative defect-fixing commits indicate defect-
fixing commits that should link with issue reports but do not. Prior studies usually use
an ILA called keyword extraction approach, which uses regular expressions to iden-
tify defect-fixing commits in which commit messages include issue ids. However,
this approach induces false-positive/negative defect-fixing commits.

For example, the commit of cf3318e1b in the Tez project, which is a studied
project in this paper, includes two issue ids, TEZ-8 and TEZ-1594. TEZ-8 corre-
sponds to a defect-fixing process while TEZ-1594 does not. The keyword extraction
approach links this commit and these two issue reports and refers to this commit as a
defect-fixing commit. However, TEZ-8 is not directly related to this commit. Hence,
the commit of cf3318e1b is a possible false-positive defect-fixing commit.

Also, the commit message of the commit of 0b74bd5e in the Avro project, which
is also a studied project, does not include any issue ids. Hence, the keyword extrac-
tion approach does not refer to this commit as a defect-fixing commit. However,
the changed file by this commit includes an issue id (AVRO-2033) that corresponds
to a defect-fixing process. Hence, this commit is a possible false-negative defect-
fixing commit. Therefore, even the most popular existing ILA may induce false-
positive/negative defect-fixing commits.

Next, let us show a simple survey that clarifies do ILAs affect defect prediction.
We conducted the preliminary survey that has been used by prior defect prediction
studies [28, 87]. The procedure of our survey is as follows:

1. We search for studies that use the keyword “defect prediction” and are published
in the top venues1 using Google Scholar.

2. We read the title and the abstract and exclude non-defect prediction studies (e.g.,
issue report studies) and studies that do not have any PDF links. The remaining

1 The top venues were defined by Google Scholar Metrics of “Software Systems.” The number of top
venues is 20 (final access: 2021/11/1). We can find all top venues: https://scholar.google.com/
citations?view_op=top_venues&hl=en&vq=eng_softwaresystems

6

https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_softwaresystems
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_softwaresystems


An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 7

studies are considered defect prediction studies. We call this set of studies Group
A.

3. We read the papers and collect the ILAs that are explicitly written in the pa-
pers. Also, we exclude studies that are not change/commit-level defect prediction
(a.k.a. just-in-time defect prediction) studies The remaining studies are consid-
ered just-in-time defect prediction studies. We call this set of studies Group B.

The studies collected into Group A and Group B can be found in our Google sheet2.
Only 16.1% of the prior studies use datasets that were generated using ILAs

except for the keyword extraction approach. However, 83.3% of them reuse the
publicly available dataset. Our survey collects 112 studies in Group A. The propor-
tion of the studies that explicitly use any datasets that were generated using ILAs ex-
cept for the keyword extraction approach is only 16.1% (18/112). In addition, 83.3%
of them (15/18) reuse the ReLink dataset that is generated by an ILA, ReLink [84].
Since the ReLink dataset was publicly available3, several prior defect prediction stud-
ies used this dataset, which implies that almost all prior defect prediction studies do
not consider ILAs but simply use the publicly available dataset or the most popular
ILA, the keyword extraction approach.

However, we have another question: how many commits can the keyword extrac-
tion approach link with issue reports? If the number of linked commits is high and
such links are accurate, we do not need to use any ILAs. Since we have already dis-
cussed that the keyword extraction approach induces false-positive/negative defect-
fixing commits, we counted the number of linked commits. To answer this question,
we investigated all the projects that were used as the target projects in Group B except
for the unclear or unreachable projects (e.g., “Mozilla” is used as a target project by
prior studies while Mozilla is an organization having several projects, not a project).
There are 24 studies in Group B. We used Group B because such linked commits
are used in just-in-time defect prediction studies. We applied the following regular
expressions that were modified regular expressions of the original SZZ [69] to all
commit messages and computed the proportion of commits where commit messages
include at least one issue id candidate (i.e., the proportion of linked commits):

– bug[#\s\t] ∗ [0 − 9]+
– fix[#\s\t] ∗ [0 − 9]+
– pr[#\s\t] ∗ [0 − 9]+
– show\ bug\.cgi\?id = [0 − 9]+
– \[[0 − 9] + \]

In addition, for the Apache projects, we considered the issue ids that are used in the
Apache projects such as CAMEL-{{issue id}} in the Camel project. If the proportion
is high, the number of linked commits by the keyword extraction approach is high.

Table 1 lists the proportion of commits in which we can find issue id candidates
with the regular expressions in the studied projects in Group B. The number of stud-
ied projects without duplication is 58. The gold cell indicates a proportion of over

2 https://docs.google.com/spreadsheets/d/15C1cFH8KZa594DEJzOM5bx1zurNT7m_

GLDcWZsOeYsk/edit?usp=sharing
3 The dataset was able to be downloaded from the site of https://cse.hkust.edu.hk/˜scc/
ReLink.htm. However, currently, the download link is expired (2021/10/9).

7

https://docs.google.com/spreadsheets/d/15C1cFH8KZa594DEJzOM5bx1zurNT7m_GLDcWZsOeYsk/edit?usp=sharing
https://docs.google.com/spreadsheets/d/15C1cFH8KZa594DEJzOM5bx1zurNT7m_GLDcWZsOeYsk/edit?usp=sharing
https://cse.hkust.edu.hk/~scc/ReLink.htm
https://cse.hkust.edu.hk/~scc/ReLink.htm


8 Kondo et al.

Table 1: The proportion of commits in which we can find issue id candidates in the
studied projects in Group B (58 projects from 24 studies). The numerator is the num-
ber of commits in which we can find issue id candidates; the denominator is the
number of all commits without merge commits. We cloned all the projects on Oct. 7,
2021.

Project Proportion (%)

ABINIT 1.1 (142/13,316)
Accumulo 81.6 (6,402/7,844)
ActiveMQ 5.5 (709/12,807)
Amber 5.2 (32/618)
AngularJS 0.8 (97/12,755)
Ant 6.4 (1,068/16,776)
ArgoUML 0.6 (177/28,722)
Eclipse JDT 27.2 (6,799/24,983)
Bitcoin 0.9 (204/22,931)
Buck 0.3 (90/26,497)
Bugzilla 83.4 (12,036/14,424)
Camel 53.9 (36,245/67,206)
Columba 0.0 (0/369)
LibreOffice 2.3 (12,585/538,108)
Derby 84.6 (6,994/8,269)
Flink 65.2 (24,219/37,143)
Geronimo 37.9 (6,283/16,583)
Gerrit 3.9 (1,338/33,896)
Gimp 12.4 (7,163/57,739)
GWT 0.4 (45/10,598)
Hadoop 28.4 (20,374/71,704)
Hadoop Common 0.3 (99/33,473)
HBase 90.0 (47,655/52,948)
HOOMD-blue 0.1 (16/16,507)
ITK 1.1 (492/44,655)
iText 0.7 (28/4,279)
JDeodorant 0.2 (3/1,696)
Jackrabbit 1.9 (270/14,071)
Jaxen 7.4 (110/1,485)

Project Proportion (%)

Jetty 2.5 (494/19,576)
JRuby 11.0 (5,275/48,059)
LAMMPS 0.2 (50/25,274)
libMesh 0.4 (109/25,333)
Liferay Portal 0.0 (232/823,321)
Linux 2.5 (23,811/966,548)
Lucene-Solr 0.3 (174/64,639)
Mahout 51.2 (2,346/4,578)
Maven 19.9 (2,660/13,375)
MDAnalysis 2.7 (172/6,443)
OsmAnd 2.0 (1,262/63,102)
OpenJPA 68.6 (5,071/7,397)
OpenStack 6.3 (15,379/242,338)
PCMSolver 0.3 (5/1,756)
Perl 5 1.4 (1,638/114,320)
Pig 88.2 (5,492/6,227)
PostgreSQL 4.8 (3,797/79,044)
Qt Base 0.7 (379/56,273)
RMG-Py 0.4 (64/14,351)
Rails 1.2 (884/76,060)
Rhino 16.3 (711/4,365)
Spring Framework 0.3 (79/26,776)
Synapse 0.3 (64/19,942)
Tomcat 16.5 (11,265/68,226)
VTK 1.5 (998/64,943)
Voldemort 0.2 (10/4,413)
Xenon 0.1 (2/2,047)
X server 7.7 (1,849/23,940)
XStream 0.2 (8/3,456)

80%. This is because, in this paper, we used projects in which over 80% of commits
include at least one issue id candidate as our studied projects. The blue cells indicate
a proportion of under 50%. We observe only 5 of 58 projects are over 80%. On the
contrary, almost all projects (49/58 projects) are less than 50%.

In summary, these result show that we need ILAs to improve the accuracy and
number of links between commits and issue reports. Otherwise, many commits ex-
ist that do not correspond to any issues reports. Such commits could potentially be
defect-fixing commits that are not detected (false-negative defect-fixing commits).
In addition, false-positive defect-fixing commits also exist. Such commits affect de-
fect prediction. Hence, in this study, we investigated the impact of ILAs to defect
prediction.

8



An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 9

3 Related Work

Locating defect-fixing and defect-inducing commits by using the issue ids in com-
mit/log messages is a common practice in software engineering [10, 12, 17, 18, 21,
26, 27, 49, 55, 63, 69, 71–74, 82, 84, 85]. For example, Fischer et al. [26] applied
regular expressions to log messages to retrieve issue ids.

In defect prediction, the SZZ algorithm [69] is the de facto standard approach
to detect both defect-fixing and defect-inducing commits by using the issue ids in
commit/log messages. This algorithm uses two data sources (i.e., a version control
system and an issue-tracking system) and links these data sources to detect defect-
fixing commits. Defect-inducing commits are tracked based on the modifications in
such defect-fixing commits.

3.1 Challenges of the SZZ Algorithm

The SZZ algorithm has challenges to detect defect-fixing and defect-inducing com-
mits [9, 11, 12, 16, 22, 25, 33, 35, 40, 43].

Multiple-purposes commits: A defect-fixing commit could include modifications
that accomplish other purposes apart from fixing defects. Herzig et al. [35] called
commits that have multiple purposes tangled changes. Such changes affect the SZZ
algorithm when detecting defect-inducing commits from defect-fixing commits. Kawrykow et
al. [40] found that up to 15.5% of method updates occur by non-essential modifica-
tions only. Kim et al. [43] modified the SZZ algorithm to handle not only defect-fixing
hunks but also other purpose hunks in a defect-fixing commit. The modified SZZ al-
gorithm improved the accuracy of detecting defect-inducing commits compared with
the original SZZ algorithm. Herbold et al. [33] found that half of defect-fixing com-
mits that were detected by the SZZ algorithm are not actual defect-fixing commits.

A small number of detected commits: The SZZ algorithm uses an issue-tracking
system to detect defect-fixing commits; however, this approach can only detect a frac-
tion of the defect-fixing commits [9, 11, 12, 16]. For example, Bachmann et al. [11]
reported the rate of fixed issue reports that are linked with commits. They found that
the rate for the Apache HTTPD project is 43.43%, the Eclipse project is 33.05%, the
GNOME project is 38.99%, the NetBeans project is 54.60%, the OpenOffice project
is 7.43%, and the BSZKB project is 37.31%. Ayari et al. [9] reported that the heuristic
is not sufficient to find links between issue reports and changes. Indeed, our motivat-
ing example (Section 2) also reported that only a fraction of commits include issue
id candidates. Hence, the SZZ algorithm needs to detect defect-fixing commits based
on incomplete information.

In summary, the SZZ algorithm has two challenges: (1) detecting defect-inducing
commits based on multiple-purpose defect-fixing commits; (2) detecting defect-fixing
commits based on incomplete information.

9



10 Kondo et al.

3.2 Detecting Defect-Inducing Commits Based on Multiple-Purpose Defect-Fixing
Commits

To address the first challenge that a defect-fixing commit intends to accomplish mul-
tiple purposes or is not related to defects [35, 40, 41, 51, 52, 56, 59], prior studies
have proposed several solutions [36, 52–54, 56, 62]. Jung et al. [36] excluded non-
fixing hunks from a defect-fixing commit. They identified 11 non-fixing hunk pat-
terns, which can be divided into two categories: syntactically detectable patterns and
semantically detectable patterns. For example, renaming is a non-fixing hunk pat-
tern in the syntactically detectable patterns category. Pan et al. [59] also summarized
code patterns in defect-fixing hunks. They found 27 code patterns; the defect-fixing
hunks that include one of them account for around 50%. Nguyen et al. [56] called
such commits mixed-purpose fixing commits (MFCs). They proposed a tool, Cardo,
which achieved an average of 93% precision and 61% recall to detect MFCs. Neto et
al. [53] tried to remove refactoring changes by modifying the SZZ algorithm and
called this approach refactoring aware SZZ implementation (RA-SZZ). They reported
that RA-SZZ removed 20.8% lines that were identified as defective lines by another
state-of-the-art SZZ implementation.
cregit [30] has been utilized to detect defect-inducing commits from defect-

fixing commits including non-source code changes (e.g., style changes). This tool
converts a Git repository into a view repository in which specified types of files (e.g.,
Java files) are converted into token per line files. Each token also has an AST type.
Hence, we can track the modification at the token level and easily ignore all non-
source code modifications (e.g., comments, blanks, and format changes).

However, even if researchers use these previous solutions to detect defect-inducing
commits, they need to detect defect-fixing commits first. If such detected defect-fixing
commits are inaccurate, any of the previous solutions induce false defect-inducing
commits. Hence, detecting defect-fixing commits accurately is important in detect-
ing defect-inducing commits to take full advantage of the previous solutions. Hence,
in this paper, we focus on the second challenge, detecting defect-fixing commits based
on incomplete information.

3.3 Issue-Link Algorithm: Detecting Defect-Fixing Commits Based on Incomplete
Information

To address the second challenge, many studies have attempted to improve the ac-
curacy of detecting defect-fixing commits [10, 12, 17, 18, 26, 49, 55, 63, 69, 71–
74, 82, 84, 85]. More specifically, ILAs (issue-link algorithms) have been proposed
to link issue reports to commits. For example, Fischer et al. [26] proposed an ILA
that extracts issue ids from log messages to link between issue reports and commits.

As we described in Section 1, prior studies that proposed ILAs have two chal-
lenges: the data inconsistency and the small comparisons. Table 2 provides an overview
of the studied projects (in the “Studied Projects/Organizations” column) and ILAs (in
the “Baseline ILAs name” column) that were compared with the proposed ILA (in
the “Proposed ILAs name” column) in prior studies. “NaN” indicates that no infor-

10



An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 11

Table 2: Data inconsistency and small comparisons in prior studies for ILAs. The
numbers in parentheses in the “Studied Projects/Organizations” column indicate
the numbers of retrieved projects from the Apache Software Foundation or studied
projects.

Reference Year Studied Projects/Organizations Baseline ILAs Name Proposed ILA Name

Fischer et al. [26] 2003 Mozilla NaN NaN
Śliwerski et al. [69] 2005 Mozilla, Eclipse NaN SZZ
Bachmann et al. [10] 2009 Apach HTTP Server, Eclipse etc. (6) NaN NaN
Bachmann et al. [12] 2010 Apache HTTP Server NaN LINKSTER
Bird et al. [17] 2010 NaN NaN LINKSTER
Sureka et al. [74] 2011 Apache HTTP Server, WikiMedia NaN NaN
Wu et al. [84] 2011 ZXing, OpenIntents, Apache HTTP Server Traditional ReLink
Nguyen et al. [55] 2012 ZXing, OpenIntents, Apache HTTP Server ReLink, BugScout MLink
Bissyandé et al. [18] 2013 Apache Software Foundation (10) ReLink, IR techs. NaN
Le et al. [49] 2015 Apache Software Foundation (6) MLink RCLinker
Schermann et al. [63] 2015 Apache Software Foundation (15) NaN PaLiMod
Sun et al. [72] 2016 Apache Software Foundation (18) FRLink, RCLinker NaN
Sun et al. [73] 2017 CLI, Collections etc. (6) RCLinker FRLink
Sun et al. [71] 2017 Apache Software Foundation (12) FRLink PULink
Xie et al. [85] 2019 Apache Software Foundation (6) PULink DeepLink
Tu et al. [82] 2020 LAMMPS, RMG-PY etc. (9) Keyword labeling EMBLEM

mation was available or that the authors did not provide any names with their ILAs
(e.g., heuristics). To collect these ILAs, we conducted a systematic literature study
with the snowballing approach [83]. This is because we want to collect prior studies
that proposed ILAs regardless of their venues and years. We observe that prior stud-
ies used different studied projects (data inconsistency), and compared their proposed
ILAs with only few ILAs (small comparison). As a result, it is difficult to compare
their results and conclude on the best-performing ILA in terms of the accuracy of
detecting defect-fixing commits and improving defect prediction performance.

3.4 Defect Data Quality in Defect Prediction Research

If an ILA induces false-positive/negative defect-fixing commits, the ground-truth data
that is used to train and evaluate defect prediction models would be biased. Indeed,
prior studies have investigated the importance of data quality [16, 57]. Nguyen et
al. [57] investigated the impact of missing links for a commercial project. They found
that even a commercial project, which adheres to strict rules, also provides a biased
dataset. Bird et al. [16] reported that the defect-fixing commits that were detected by
using an issue-tracking system are not accurate and affect defect prediction perfor-
mance.

In addition, prior studies have investigated the impact of noisy data on defect pre-
diction performance [34, 42, 60, 61, 78]. Kim et al. [42] reported the impact of the
false-positive/negative rate of detected defects by an ILA on defect prediction perfor-
mance. They found that the proportion of false-positive/negative rates over a certain
threshold (e.g., 20%) had a significant effect on defect prediction performance. Ram-
ler et al. [61] studied the noise in a defect dataset. They reported that the prediction
performance is not significantly affected by 20% noise. Rahman et al. [60] compared
the impact of the bias and sample size on defect prediction performance, reporting

11



12 Kondo et al.

Issue
Tracking
System

Software
Repository

…

Issue Reports

…

Commits

Keyword
Extraction

1: Extract explicit 
links by the 

Keyword 
Extraction

Ground-
Truth
Links

ILAs

4: Extract links by 
the ILAs

Random
Link Deleter

2: Randomly 
delete X% links

Defect
Prediction

Model

5: Execute defect 
prediction based 
on extracted links

3: Preprocess data

Data Pre-
processor

Data Flow

Apply Operation

Tool

Data

Operation or A Data Set

Ground truth and deleted data are generated

Evaluate ILAs

6: Repetitions

Fig. 2: Overview of our experimental design.

that the sample size is more important than the bias. They found that researchers need
to focus more on collecting samples rather than the bias. Herzig et al. [34] reported
that bug reports are frequently misclassified (33.8% of bug reports). In addition, they
found that 39% of files that are labeled as defective are not defective on average.
They also showed that such misclassified data potentially decrease the defect pre-
diction performance. Tantithamthavorn et al. [78] evaluated the impact of mislabeled
data on defect prediction. They found that such mislabeled data rarely affect precision
values; in contrast, they do affect recall values.

To remedy such biased ground-truth data, we need to improve ILAs. To the best of
the authors’ knowledge, no studies have conducted large-scale empirical comparisons
across ILAs, though many prior studies have proposed various ILAs (as described in
Table 2). Hence, we conducted a large-scale empirical comparison across ILAs and
evaluated the impact to defect prediction performance. Note that detecting defect-
inducing commits based on defect-fixing commits is beyond the scope of this paper.
We use a basic approach to detect defect-inducing commits to evaluate the impact to
defect prediction performance.

4 Experimental Design

In this section, we give an overview of our experimental design. Figure 2 shows the
steps of our experiments. In the following, we describe these steps in detail.

1. Extract explicit links by the Keyword Extraction. The keyword extraction approach
uses issue ids in the commit messages to make links between issue reports and com-

12



An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 13

Commit A

Commit B

Issue A

Issue B

Commit A

Commit B

Issue A

Issue B

Defect-fixing commit Missing defect-fixing commit

Randomly
delete

66% links

Fig. 3: An example to delete 66% of the explicit links from three of them.

mits. We regard commits that are linked with studied issue reports labeled Bug as
defect-fixing commits and use them as the ground-truth defect-fixing commits. We
call the links of such ground-truth defect-fixing commits explicit links.

2. Randomly delete X% links. We randomly deleted X% explicit links on our studied
datasets (Section 5.1). By randomly deleting explicit links and regarding defect-fixing
commits that are only linked with such deleted links as missing defect-fixing commits,
we can simulate and evaluate a scenario in which datasets have low link proportions.
Figure 3 shows an example. Let us assume we have three explicit links (Commit A
and Issue A, Commit A and Issue B, and Commit B and Issue A) and delete 66%
of the links. We might delete two links: Commit A and Issue A, and Commit B and
Issue A. We regard Commit B as a missing defect-fixing commit; Commit A is still a
defect-fixing commit because Commit A is still linked with Issue B. We describe the
studied delete rates (i.e., X%) in our results section (Section 6.1 and Section 6.2).

3. Preprocess data. We executed the preprocessing for the ILAs. The missing defect-
fixing commits should not have any issue ids on commit messages because we assume
that the keyword extraction approach overlooks such commits. Hence, we removed
issue ids from the commit messages to conduct a fair comparison when using the
commit messages on the missing defect-fixing commits. In addition, we applied a
basic restriction. We describe the details of this restriction in Section 5.2. The details
of the preprocessing for each ILA are given in Appendix A.

4. Extract links by the ILAs. We applied the ILAs to the preprocessed commits and
issue reports for each delete rate. When using a delete rate greater than 0%, ILAs are
trained on the explicit links without the deleted links if such ILAs need to be trained.

5. Execute defect prediction based on extracted links. We executed the defect predic-
tion on the extracted links. We first used the extracted links to identify defect-fixing
commits. We used such defect-fixing commits to identify defect-inducing commits
by using the commit-link algorithm. We describe the details of our commit-link al-
gorithm implementation in Section 5.3. Based on the defect-inducing commits, we

13



14 Kondo et al.

trained the defect prediction model and evaluated the performance across different
ILAs.

6. Repetitions. To relieve data selection bias on the deleted links, we repeated steps
2–5. We repeated steps 1–4 100 times while we repeated step 5 20 times. We used
the 100 results of step 4 as the RQ1 results and the 20 results of step 5 as the RQ2
results. We employed different times because the execution time of step 5 would be
too long to conduct 100 repetitions. We discussed the details of the execution time in
Section 6.2.

A running example. Let us describe these steps with an example: the Avro project. In
particular, we utilize the commit a439bf9. In step 1, the keyword extraction approach
forms the links. The commit message of the commit a439bf9 includes a studied issue
id of AVRO-2741 that is labeled Bug. Consequently, the keyword extraction approach
links this commit to the issue report of AVRO-2741 and refers to this commit as a
defect-fixing commit. Also, this link is an explicit link. For all the commits in the
Avro project (2,728), the keyword extraction approach links 778 commits to issue
reports labeled Bug. These commits are also defect-fixing commits, and all the links
are explicit links.

In step 2, we delete X% links. If X is zero, no links are deleted. However, if X is
not zero, X% links are deleted. For example, if X is 50, half of the links in the Avro
project are randomly deleted. We refer to all commits whose all links are deleted as
missing defect-fixing commits. For example, if the link for the commit a439bf9 is
deleted, the commit a439bf9 is a missing defect-fixing commit.

In step 3, if the commit a439bf9 is a missing defect-fixing commit, the issue
id (i.e., AVRO-2741) is excluded from the commit message. We apply this exclusion
process to all missing defect-fixing commits. In addition, we also apply the basic
restriction to all remaining links to exclude the false-positive links (Section 5.2). The
link of the commit a439bf9 is not the false-positive link; and therefore, it is not the
target of the basic restriction.

In step 4, ILAs are applied to all commits and issue reports. If the commit a439bf9
is a missing defect-fixing commit, ILAs may recover the link between the commit and
the issue report of AVRO-2741. However, ILAs may form links between the commit
and other issue reports as false-positive links. Similarly, ILAs may recover links be-
tween any commits and any issue reports.

In step 5, we conduct defect prediction. First, we use all the commits that are
defect-fixing and not missing defect-fixing commits, and all the commits that are not
defect-fixing but linked to issue reports labeled Bug by ILAs to find the corresponding
defect-inducing commits. For the commit a439bf9, if either the link is not deleted
in step 2 or the link is recovered in step 4, this commit is referred to as a defect-
fixing commit and it is utilized to find the corresponding defect-inducing commits.
Otherwise, this commit is not referred to as a defect-fixing commit even if it is an
actual defect-fixing commit. We build a defect prediction model based on the defect-
inducing commits.

In step 6, steps 2-5 are repeated. This repetition allows us to study the impact of
various deleted links and false-positive links (i.e., the combination of defect-fixing
commits, false-positive defect-fixing commits, and missing defect-fixing commits).

14



An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 15

Table 3: Overview of studied Apache projects

Project # Commits # Merge # Issues % Linked % Defect-Fixing % Defect-Inducing Latest Abbr.
Commits (Type: Bug) Commits Commits Commits Commit Hash

Avro 2,788 60 908 81.1 (2,213/2,728) 28.5 (778/2,728) 9.9 (269/2,728) 791ec60

Tez 3,866 16 1,786 96.3 (3,706/3,850) 53.0 (2,040/3,850) 26.5 (1,019/3,850) ba441c1

ZooKeeper 3,784 6 1,339 84.6 (3,197/3,778) 44.7 (1,689/3,778) 15.5 (586/3,778) b5feadc

Chukwa 1,104 2 340 82.4 (908/1,102) 36.8 (405/1,102) 19.6 (216/1,102) 38742d2

Knox 2,856 32 1,047 82.7 (2,336/2,824) 35.1 (992/2,824) 22.3 (629/2,824) a821cf3

For the commit a439bf9, we study both cases where the commit a439bf9 is a miss-
ing defect-fixing commit and a defect-fixing commit.

5 Methodology

In this section, we describe our methodology. In particular, we discuss our studied
datasets, ILAs, a commit-link algorithm, defect prediction models, evaluation mea-
sures, preprocessing steps, a resampling approach, and validation schemes. The tools,
data, and operations in Figure 2 correspond to each method.

5.1 Studied Datasets

We used five open-source software projects (the Avro [3], Tez [7], ZooKeeper [8],
Chukwa [4], and Knox [6]) from the Apache Software Foundation as our studied
datasets. Table 3 describes the basic information of the projects. Avro is a data serial-
ization system. Developers can use Avro to transform raw data into rich binary data.
Tez is a framework on Hadoop that allows developers to process data. ZooKeeper
is a centralized service for managing distributed systems. Chukwa is a monitoring
system for distributed systems. Knox provides developers with an application gate-
way on Hadoop. As a result, we used two domains (data serialization and distributed
system) in this study. We extracted Git repositories on GitHub and issue reports on
JIRA for these five projects. The studied data include over 10k linked commits and
5k issue reports.

We chose these five projects because almost all commit messages of the reposito-
ries include issue ids on JIRA. The proportion of linked commits (i.e., including issue
ids on commit messages) for the Avro project is 81.1%, for the Tez project is 96.3%,
for the ZooKeeper project is 84.6%, for the Chukwa project is 82.4%, and for the
Knox project is 82.7%; the proportion of defect-fixing commits that are detected by
our keyword extraction approach (we describe the details in Section 5.2) for the Avro
project is 28.5%, for the Tez project is 53.0%, for the ZooKeeper project is 44.7%,
for the Chukwa project is 36.8%, and for the Knox project is 35.1%.

We considered these defect-fixing commits as the ground-truth defect-fixing com-
mits. This is commonly used when evaluating ILAs [11, 71, 72, 74, 85] because
prior studies have validated this practice [11, 71, 74]. Prior studies [18, 71, 74] ex-
ecuted a manual inspection to validate the accuracy of their data. Similar to such
prior studies, to validate the accuracy of our ground-truth data, we also executed a

15



16 Kondo et al.

Table 4: Overview of studied ILAs

ILA Abbr. References

Keyword Extraction KE [10, 18, 26, 55, 63, 69, 72, 74, 84, 85]
Time Filtering TF [10, 18, 49, 55, 63, 69, 71–74, 84, 85]
Natural Language Text Similarity TS [18, 49, 55, 71–74, 84, 85]
Natural Language Text Similarity with Word Association WA [55]
Message Generation from Source Code GS [49]
Loner Heuristics LO [63]
Phantom Heuristics PH [63]
Modified Text Files MT [72, 73]
PU Learning PU [71]
Machine Learning ML [49, 85]

manual inspection for both false-positive and -negative defect-fixing commits by two
of the authors. We first randomly extracted 361 defect-fixing commits to validate
the number of false-positive defect-fixing commits and 367 non-defect-fixing com-
mits to validate the number of false-negative defect-fixing commits from all projects.
These numbers are determined by the condition where the confidence level is 95%
and the confidence interval is 5. Two of the authors labeled these commits as false-
positive/negative defect-fixing commits. The kappa coefficients [67] of this labeling
process are 1.000 and 0.971, respectively. For the conflicts between two of the au-
thors, the two of the authors carefully discussed and decided the final label. Given
this manual inspection, we found that the accuracy of the defect-fixing commits and
non-defect-fixing commits are 99.7% (360/361) and 89.1% (327/367), respectively,
which are high accuracy values. Consequently, the ground truth data is reliable. We
discuss the false-positive and -negative defect-fixing commits in Section 7.5 and the
threats of this manual inspection in Section 8.3.

We studied the Java source code in the studied projects, though the Avro project
also provides developers with implementations on multiple languages. Note that we
removed merge commits from the studied commits. This is because merge commits
only merge existing diff codes and do not add/modify any codes. In addition, we stud-
ied issue reports that are labeled Bug and the status is either Resolved or Closed.
Note that there exists an issue report whose resolution date is missing. Hence, in our
experiment, we used the closed date as a proxy of the resolution date if the resolution
date is missing.

5.2 Studied ILAs

We first collected prior studies that propose ILAs. To prevent overlooking such prior
studies, we used the snowballing approach [83] that we described in Section 3.3. In
particular, when we find a paper that proposes ILAs, we also collect all studies that
refer to this study and are referred by this study. This process allows us to collect
studies regardless of their venues and years. Also, we used the result of our literature
survey that we described in Section 2.2. Finally, we found 16 prior studies (Table 2).

Prior studies combined several criteria (e.g., text similarity) on their ILAs [10,
12, 17, 18, 26, 49, 55, 63, 69, 71–74, 82, 84, 85]. In this paper, we retrieved each of

16



An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 17

the criteria from the previous ILAs and call them and their combinations ILAs. This
is because such criteria are the finest-grained algorithms when linking issue reports
to commits, and we can cover not only previous ILAs, but also other combinations
of criteria. Note that we exclude the studies that used manual analysis [12, 17, 82].
Table 4 lists all the studied ILAs. We studied 10 ILAs including the baseline ILA
(the keyword extraction approach). Note that because we used two models for the
machine learning approach, the actual number of studied ILAs is 11. Before applying
these ILAs, we applied an essential restriction:

– a linked issue report is created before the date of its linked commits are commit-
ted; and

– such a linked issue report is resolved after the date of its linked commits are
committed.

All ILAs include this restriction. We call this restriction the basic restriction. This
restriction reduces the number of false-positive defect-fixing commits. We discussed
the details in Section 7.5. All the implementations of ILAs used in this paper can be
seen as a Python package [45].

In the following, we give a brief overview of the ideas behinds ILAs. We describe
the details of them in Appendix A.

– Keyword Extraction (KE): This is a de facto standard approach to identify defect-
fixing commits extracting issue ids from commit messages with regular expres-
sions. As described previously, we used the output of this ILA as the ground-truth
defect-fixing commits. However, even if we use the projects in which almost all
commits include issue ids, linking commits and issue reports is a difficult process.
We describe this threat in Section 8.1.

– Time Filtering (TF): This approach makes links between commits and issue re-
ports where the date information is within a certain time interval. The main idea
is that an issue report might be resolved right after the commit date of the cor-
responding modification. Interestingly, prior studies used different time intervals.
For example, Bachmann et al. [10] used seven days or less; Schermann et al. [63]
used five minutes or less. Therefore, it is difficult to determine which time interval
should be used. From our preliminary analysis, we decided to use 10 minutes as
our time interval. We discuss the details of the preliminary study in Section 7.3.

– Natural Language Text Similarity (TS): This approach computes a text similarity
value between issue report descriptions and commit messages. If such a similarity
value is high, then a pair would be linked. The main idea is that the related issue
reports and commits have similar descriptions.

– Natural Language Text Similarity with Word Association (WA): This approach
also computes a text similarity value between issue reports and commits. How-
ever, this approach additionally associates words between issue reports and com-
mits based on their contextual relationship.

– Message Generation from Source Code (GS): This approach uses comments of
source code instead of commit messages. A prior study [49] used a comment
generation technique. They used javadoc comments as the supervised data to train
the technique, and therefore, we used the javadoc comments instead of using code

17



18 Kondo et al.

comment generation techniques to ensure that clean information is used. The pro-
cedure is the same as that in the natural language text similarity approach.

– Loner Heuristics (LO): This approach focuses on a scenario in which one com-
mit addresses one issue report. Schermann et al. [63] proposed heuristics of the
scenario to identify defect-fixing commits.

– Phantom Heuristics (PH): This approach focuses on a scenario in which a set of
commits addresses one issue report. Schermann et al. [63] proposed heuristics of
the scenario.

– Modified Text Files (MT): This approach considers not only commit messages but
also modified text files. The main idea is to retrieve additional information from
natural language text in modified files.

– PU Learning (PU): This approach uses PU (positive and unlabeled) learning [23].
As there might exist many unlabeled links between issue reports and commits,
prior study [71] used the PU learning to predict positive links based on such un-
clear data. To predict positive links, we provided five features with the PU learn-
ing approach: the time difference, the time difference type, the cosine similarity
of text, the proportion of modified source files, and the number of modified source
files. Further details of the features are described in Appendix A.

– Machine Learning (ML): This approach applies machine learning models to pre-
dict links. Although the PU learning approach predicts positive links based on
positive and unlabeled links, this approach predicts positive links based on posi-
tive links. We used two machine learning models: a random forest model [64] and
a support vector machine model [66]. To predict positive links, we provided five
features with the machine learning approach that are also used on the PU learning
approach.

Note that, in this paper, we decided not to use the following four ILAs that have
been proposed previously:

– File Filtering Approach [26, 74]
– Developer Filtering Approach [63, 69, 74, 84]
– Code Similarity Approach [55]
– Deep Learning Approach [85]

The file filtering and code similarity approaches need modified files information
(patches). However, the Apache JIRA prohibited such information from being re-
trieving. The developer filtering approach is a common practice; however, we cannot
use such information because of GDPR [24]. The deep learning approach was pro-
posed by Xie et al. [85]. However, many settings are not clear in the paper, such as the
details of deep learning architectures. Hence, we decided not to use these approaches
in this paper.

5.3 Commit-Link Algorithm

After detecting defect-fixing commits, we need to detect defect-inducing commits.
We call this process commit-link algorithm (CLA). We used a basic procedure as our
CLA:

18



An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 19

1. Apply cregit [30] to the target repository. As described in Section 3, cregit [30]
converts a Git repository into a view repository in which specified types of files
(i.e., Java file) are converted into token per line files. Each token also has an AST
type. Hence, we can easily ignore redundant tokens (e.g., comments).

2. Extract commit hash lists from the target repository. Remove the first commit
hash. This is because the first commit is not related to source code in the Avro
and ZooKeeper projects and it is difficult to track individual modifications in the
Tez, Chukwa, and Knox projects.

3. Apply the git show4 command to extract all changed lines (added lines and
deleted lines) for each commit. Note that the git show command classifies all
changed (added/deleted/modified) lines in a commit as the added lines or the
deleted lines. A modified line is represented by an added line and a deleted line.

4. Extract the deleted lines for all Java files for each commit, but ignore the added
lines. This is because the added lines are newly added lines in this defect-fixing
commit. Hence, such lines do not have any information to detect defect-inducing
commits.

5. Remove the deleted lines in non-source code (i.e., comments).
6. Apply the git blame5 command to the remaining deleted lines to identify the

commits where the deleted lines were added. We regard the extracted commits as
defect-inducing commits.

5.4 Studied Defect Prediction Model

We used the logistic regression model as our defect prediction model. As our goal is
not to construct an accurate defect prediction model, but to reduce the difference in
defect prediction performance from the ground-truth defect prediction performance
by using ILAs, we only chose logistic regression. The logistic regression model is
frequently used for constructing defect prediction models [13, 32, 39]. This model
learns the relationship between a dependent variable and independent variables. In
defect prediction, a dependent variable is the flag of commits that indicates whether
this commit is defective or clean; dependent variables are the features of commits.

To construct a logistic regression model, we used the scikit-learn implementa-
tion [65]. Because it is important to optimize the hyper-parameters of defect predic-
tion models [79], we optimized the hyper-parameter of the logistic regression model.
The scikit-learn implementation has two hyper-parameters that can be optimized: the
regularization strength C and the norm of the penalty. We optimized these two hyper-
parameters in the following ranges: 0 to 10 for C and l1 and l2 for the norm of the
penalty. We might optimize other hyper-parameters; however, because of the long
execution time, we only used these two hyper-parameters. We describe the execution
time of defect prediction in Section 6.2. From empirical and theoretical viewpoints,
the random search is one of the best optimization methods [15]. Hence, we used the
random search to optimize the hyper-parameters of the logistic regression.

4 https://git-scm.com/docs/git-show
5 https://git-scm.com/docs/git-blame

19



20 Kondo et al.

Defect-fixing commit

Clean commit

Precision

Recall

True Data ILA Result

Fig. 4: An example to evaluate the accuracy of detecting defect-fixing commits.

5.5 Evaluation Measures

We evaluated two tasks: the accuracy of detecting defect-fixing commits by the ILAs
and the accuracy of detecting defect-inducing commits by the defect prediction model.
As each task has different outputs, we used different sets of evaluation measures. In
addition, we used a statistical test. In the following, we explain the evaluation mea-
sures for each task and the statistical test.

5.5.1 Detecting Defect-Fixing Commits

We used four evaluation measures: precision, recall, F1, and true-positive (TP) rate.
The precision indicates the proportion of true defect-fixing commits in all the defect-
fixing commits that are decided by an ILA; the recall indicates the proportion of
true defect-fixing commits that are identified by an ILA in all the true defect-fixing
commits. Here, the true defect-fixing commits indicate the commits that are identified
by the explicit links. Let us assume that we have three true defect-fixing commits and
two clean commits, and an ILA detects one true defect-fixing commit and one clean
commit as defect-fixing commits. In this case, the precision value would be 0.500
(1/2), and the recall value would be 0.333 (1/3) (Figure 4).

The TP rate is used on this task only. In this task, we deleted X% of the links and
have the ILAs recover missing defect-fixing commits. The precision, recall, and F1
values were computed on all the true defect-fixing commits; however, the TP rate was
computed on the missing defect-fixing commits only. This is because we want the TP
rate to evaluate the accuracy of the ILAs on the missing defect-fixing commits. Let
us assume that we have five missing defect-fixing commits. If an ILA detects two
missing defect-fixing commits as defect-fixing commits, the TP rate would be 0.400.

5.5.2 Detecting Defect-Inducing Commits

We used six evaluation measures: area under the receiver operating characteristic
curve (AUC), precision, recall, F1, Matthews correlation coefficient (MCC), and

20



An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 21

Brier score. AUC and Brier score are threshold-independent measures, though the
precision, recall, and F1 are threshold-dependent measures (we used 0.5 as the thresh-
old). This is because Tantithamthavorn et al. [76] suggested using threshold-independent
measures because threshold-dependent measures may result in different conclusions
by different thresholds. However, we also used threshold-dependent measures be-
cause such measures show us various viewpoints on the results. We also used a
threshold-dependent measure, MCC, because prior studies reported that MCC is durable
to the skewness of defect data [19, 88].

5.5.3 The Scott-Knott ESD test

We used the Scott-Knott ESD test [80] as our statistical test to compare the evalu-
ation measures across ILAs (using a 95% significance level). The Scott-Knott ESD
test is an extended version of the Scott-Knott test. The Scott-Knott test is a clus-
tering algorithm that ranks the distributions. If distributions are not statistically sig-
nificantly different, these distributions are placed in the same rank. The Scott-Knott
ESD test ranks the distributions with not only statistically significant differences but
also Cohen’s d effect size [20]. The distributions that are not statistically significantly
different or with negligible effect size are placed in the same rank.

5.6 Preprocessing for Predicting Defect-Inducing Commits

To predict defect-inducing commits, we used the defect prediction model. Thus, we
need to transform a commit into a numerical vector representation. The most common
representation in commit-level defect prediction (a.k.a. just-in-time defect prediction)
is metrics-based approaches such as using the change metrics [39, 41, 48, 52].

In this paper, we used the change metrics [39, 48] to transform a commit into a
numerical vector representation and evaluate the ILAs. We used Commit Guru [62] to
calculate the change metrics. We transformed the change metrics to remove correlated
features and normalize the features following a previous study [48]:

– Exclude ND and REXP because they are strongly correlated with NF and EXP.
– LA is replaced by LAnew = LA/LT if LT is not zero.
– LD is replaced by LDnew = LD/LT if LT is not zero.
– LT is replaced by LTnew = LT/NF if NF is not zero.
– NUC is replaced by NUCnew = NUC/NF if NF is not zero.

Finally, we apply the z-score [47] to the processed change metrics. Note that we
decided not to apply z-score to FIX because FIX is a binary metric.

5.7 Resampling Approach

When learning the model, the learning performance might be affected by imbal-
anced data [75]. Prior studies [1, 14, 77] recommend using the following resampling
approaches: random under-sampling, SMOTUNED, and MAHAKIL. In particular,
SMOTUNED and MAHAKIL are state-of-the-art approaches.

21



22 Kondo et al.

Table 5: Parameter values of the online change classification for each project (days).

Project Start gap End gap Gap Unit (test Training Iteration
interval) interval step size

Avro 30 647 243 30 1530 51
Tez 30 450 51 30 990 33
ZooKeeper 30 606 211 30 1830 61
Chukwa 30 531 140 30 1590 53
Knox 30 544 147 30 1230 41

To remove the affection of imbalanced data, we compared the three approaches
in defect prediction and selected one of them for our study. Because we used the
resampling approach in RQ2, we evaluated the impact of these different approaches
on the defect prediction performance in the same experimental setting as RQ2 except
for the repetition times. Owing to the long execution time, we used 10 repetitions.
Given the result, we found that SMOTUNED is the best resampling approach in our
study. Hence, we employed SMOTUNED. We only applied SMOTUNED to training
data because we must use raw test data for evaluation.

5.8 Validation Schemes

We need to relieve data selection bias on the deleted links. If we used a set of deleted
links, our result may be affected by which links are deleted. Therefore, we repeated
the process of deleting links 100 times for each delete rate. For each process, we
computed the evaluation measures of detecting defect-fixing commits in RQ1. Also,
we used 20 of them in RQ2 to compute the evaluation measures of detecting defect-
inducing commits. Finally, we computed the median evaluation measures across 100
repetitions in RQ1 and 20 repetitions in RQ2. When applying the Scott-Knott ESD
test, we considered the values of an evaluation measure for 100/20 repetitions as a
distribution for each ILA.

When evaluating the accuracy of detecting defect-inducing commits (just-in-time
defect prediction), we also need to relieve data selection bias on the training data and
test data. Cross-validation techniques or bootstrap-sampling techniques [80] are fre-
quently used. However, just-in-time defect prediction is studied on sequential data.
We must use past commits/changes to train the model without any information from
the future commits/changes. Thus, we used online change classification, which sat-
isfies this restriction. Online change classification was originally proposed by Tan et
al. [75], and Kondo et al. [48] formalized the parameters. We provide a Python pack-
age of the online change classification [46]. Table 5 lists the parameter settings of the
online change classification. We used the same process with prior work [48].

6 Results

22



An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 23

6.1 RQ1: Which Issue-Link Algorithm is the Best to Detect Defect-Fixing
Commits?

Motivation and Approach: In recent years, several prior studies [18, 63, 71, 72, 74,
85] focused on recovering missing links rather than detecting missing defect-fixing
commits. A missing link indicates a link between a commit and an issue report that
is not detected by the KE approach. A missing defect-fixing commit is a commit that
fixes a defect but is not detected by the KE approach.

Our main aim is to evaluate the ability of the ILAs in terms of detecting missing
defect-fixing commits rather than detecting missing links. This is because we want
to contribute to defect prediction rather than recovering missing links.

In this experiment, we deleted the explicit links of 10% to 50% in steps of 10%.
We considered the deleted explicit links as missing links and commits that are only
linked with such missing links as missing defect-fixing commits. We evaluated how
many missing defect-fixing commits are detected by the ILAs.

Results: Table 6 shows the median values of the evaluation measures for the 100
repetitions; the row indicates an ILA, and the column indicates an evaluation mea-
sure. The cells show not only the median values of the evaluation measures, but also
the ranks in the parentheses that were computed by the Scott-Knott ESD test across
the ILAs. The gold cells indicate the highest rank (= 1). Owing to space limitations,
we only show the delete rates of 50% and 10%.

Observation 1) The TF approach generally statistically significantly outperformed
the other ILAs in the case where the delete rate is 50%. Tables 6(a), 6(c), 6(e),
and 6(g) list the results on the datasets with the delete rate of 50% in the Avro, Tez,
ZooKeeper, and Chukwa projects. The TF approach achieved the highest rank on re-
call, F1, and TP rate in the delete rate of 50% except for F1 in the Chukwa project.
In addition, the rank on F1 in the Chukwa project is the second rank. This result
implies that the TF approach recovers the largest number of missing defect-fixing
commits (recall and TP rate) in almost all projects, whereas the number of false-
positive defect-fixing commits (not defect-fixing commits, but identified by the ILA)
is moderate (F1). However, the TF approach ranked fourth or fifth in terms of preci-
sion in these four projects. Hence, even if the TF approach achieved the highest F1
rank, we need to be aware of false-positive defect-fixing commits when using the TF
approach. Finally, the TF approach did not achieve high ranks in the Knox project on
the three evaluation measures (Table 6(i)). Hence, the TF approach generally statisti-
cally significantly outperformed the other ILAs while projects exist in which the TF
approach does not work well.

Observation 2) The TF approach statistically significantly outperformed the other
ILAs in terms of the TP rate for all delete rates except for the Knox project. Except
for the Knox project, all the results in Table 6 show that the TF approach achieved the
highest rank in terms of the TP rate. We observed the same results in the other delete
rates as well. This result implies that the TF approach can recover the most missing
defect-fixing commits for not only the delete rate of 50% but for all the delete rates
in many projects.

23



24 Kondo et al.

Table 6: The median values of the evaluation measures with the Scott-Knott ESD test
results on detecting missing defect-fixing commits for each ILA. The delete rate is
50% (left) and 10% (right).

(a) The Avro project (50%)

ILA Precision Recall F1 TP rate (deleted)

TF 0.757 (5) 0.821 (1) 0.788 (1) 0.824 (1)
TS 0.865 (4) 0.517 (4) 0.647 (3) 0.517 (3)
WA 0.117 (6) 0.271 (6) 0.164 (8) 0.123 (6)
GS 0.000 (7) 0.000 (10) 0.000 (9) 0.000 (9)
LO 0.817 (5) 0.236 (7) 0.366 (5) 0.471 (4)
PH 0.937 (3) 0.549 (3) 0.692 (2) 0.094 (7)
MT 0.598 (5) 0.372 (5) 0.458 (4) 0.374 (5)
PU 0.535 (5) 0.628 (2) 0.580 (3) 0.624 (2)
RF 0.993 (1) 0.103 (9) 0.188 (7) 0.055 (8)
SVM 0.986 (2) 0.127 (8) 0.225 (6) 0.104 (7)

(b) The Avro project (10%)

ILA Precision Recall F1 TP rate (deleted)

TF 0.757 (5) 0.821 (2) 0.788 (3) 0.820 (1)
TS 0.865 (4) 0.517 (6) 0.647 (6) 0.519 (5)
WA 0.078 (8) 0.404 (7) 0.130 (8) 0.190 (8)
GS 0.000 (9) 0.000 (10) 0.000 (10) 0.000 (10)
LO 0.520 (7) 0.046 (9) 0.084 (9) 0.463 (6)
PH 0.940 (2) 0.917 (1) 0.929 (1) 0.163 (9)
MT 0.598 (6) 0.372 (8) 0.458 (7) 0.371 (7)
PU 0.882 (3) 0.682 (4) 0.769 (4) 0.675 (3)
RF 0.964 (1) 0.766 (3) 0.854 (2) 0.690 (2)
SVM 0.940 (2) 0.566 (5) 0.706 (5) 0.545 (4)

(c) The Tez project (50%)

ILA Precision Recall F1 TP rate (deleted)

TF 0.847 (4) 0.776 (1) 0.810 (1) 0.777 (1)
TS 0.609 (6) 0.149 (6) 0.239 (5) 0.149 (6)
WA 0.071 (10) 0.443 (4) 0.123 (6) 0.296 (4)
GS 0.200 (9) 0.001 (10) 0.003 (10) 0.002 (9)
LO 0.888 (3) 0.159 (5) 0.270 (4) 0.318 (3)
PH 0.960 (1) 0.624 (2) 0.757 (2) 0.246 (5)
MT 0.255 (8) 0.058 (7) 0.095 (7) 0.057 (7)
PU 0.219 (7) 0.551 (3) 0.313 (3) 0.546 (2)
RF 1.000 (5) 0.004 (9) 0.007 (9) 0.001 (9)
SVM 0.955 (2) 0.040 (8) 0.077 (8) 0.031 (8)

(d) The Tez project (10%)

ILA Precision Recall F1 TP rate (deleted)

TF 0.847 (4) 0.776 (2) 0.810 (3) 0.779 (1)
TS 0.609 (6) 0.149 (7) 0.239 (5) 0.150 (8)
WA 0.042 (9) 0.604 (4) 0.079 (7) 0.441 (5)
GS 0.200 (8) 0.001 (10) 0.003 (9) 0.000 (10)
LO 0.654 (5) 0.031 (9) 0.060 (8) 0.316 (6)
PH 0.962 (1) 0.945 (1) 0.954 (1) 0.454 (4)
MT 0.255 (7) 0.058 (8) 0.095 (6) 0.055 (9)
PU 0.254 (7) 0.566 (5) 0.350 (4) 0.560 (3)
RF 0.911 (2) 0.748 (3) 0.821 (2) 0.715 (2)
SVM 0.905 (3) 0.223 (6) 0.357 (4) 0.213 (7)

(e) The ZooKeeper project (50%)

ILA Precision Recall F1 TP rate (deleted)

TF 0.908 (5) 0.771 (1) 0.834 (1) 0.774 (1)
TS 0.952 (4) 0.328 (6) 0.488 (4) 0.329 (4)
WA 0.046 (9) 0.445 (4) 0.084 (9) 0.341 (3)
GS 0.364 (8) 0.002 (10) 0.005 (10) 0.002 (8)
LO 0.846 (6) 0.090 (8) 0.163 (7) 0.181 (5)
PH 0.968 (3) 0.665 (2) 0.788 (2) 0.328 (4)
MT 0.505 (7) 0.331 (5) 0.400 (5) 0.331 (4)
PU 0.855 (6) 0.600 (3) 0.686 (3) 0.602 (2)
RF 1.000 (1) 0.062 (9) 0.117 (8) 0.037 (7)
SVM 0.990 (2) 0.120 (7) 0.214 (6) 0.104 (6)

(f) The ZooKeeper project (10%)

ILA Precision Recall F1 TP rate (deleted)

TF 0.908 (6) 0.771 (2) 0.834 (3) 0.769 (1)
TS 0.952 (4) 0.328 (8) 0.488 (6) 0.331 (7)
WA 0.029 (10) 0.557 (6) 0.055 (8) 0.476 (6)
GS 0.364 (9) 0.002 (10) 0.005 (10) 0.000 (9)
LO 0.575 (7) 0.017 (9) 0.033 (9) 0.174 (8)
PH 0.970 (2) 0.960 (1) 0.965 (1) 0.596 (4)
MT 0.505 (8) 0.331 (7) 0.400 (7) 0.335 (7)
PU 0.933 (5) 0.681 (4) 0.787 (4) 0.679 (3)
RF 0.987 (1) 0.729 (3) 0.839 (2) 0.690 (2)
SVM 0.964 (3) 0.584 (5) 0.727 (5) 0.578 (5)

(g) The Chukwa project (50%)

ILA Precision Recall F1 TP rate (deleted)

TF 0.730 (5) 0.706 (1) 0.718 (2) 0.704 (1)
TS 0.951 (4) 0.430 (3) 0.592 (4) 0.432 (3)
WA 0.271 (8) 0.323 (4) 0.297 (6) 0.164 (7)
GS 0.000 (9) 0.000 (8) 0.000 (9) 0.000 (10)
LO 0.709 (6) 0.109 (7) 0.188 (8) 0.217 (5)
PH 0.958 (3) 0.600 (2) 0.739 (1) 0.204 (6)
MT 0.663 (7) 0.272 (5) 0.385 (5) 0.268 (4)
PU 0.775 (5) 0.594 (2) 0.663 (3) 0.582 (2)
RF 1.000 (1) 0.142 (6) 0.248 (7) 0.054 (9)
SVM 0.984 (2) 0.149 (6) 0.259 (7) 0.111 (8)

(h) The Chukwa project (10%)

ILA Precision Recall F1 TP rate (deleted)

TF 0.730 (5) 0.706 (2) 0.718 (4) 0.701 (1)
TS 0.951 (3) 0.430 (7) 0.592 (6) 0.439 (4)
WA 0.171 (8) 0.472 (6) 0.251 (8) 0.229 (7)
GS 0.000 (9) 0.000 (10) 0.000 (10) 0.000 (8)
LO 0.404 (7) 0.022 (9) 0.042 (9) 0.214 (7)
PH 0.963 (2) 0.938 (1) 0.950 (1) 0.366 (5)
MT 0.663 (6) 0.272 (8) 0.385 (7) 0.263 (6)
PU 0.896 (4) 0.652 (3) 0.753 (3) 0.630 (2)
RF 0.965 (1) 0.625 (4) 0.758 (2) 0.477 (3)
SVM 0.950 (3) 0.541 (5) 0.689 (5) 0.487 (3)

(i) The Knox project (50%)

ILA Precision Recall F1 TP rate (deleted)

TF 0.867 (7) 0.451 (4) 0.594 (4) 0.452 (3)
TS 0.913 (6) 0.755 (1) 0.826 (1) 0.755 (1)
WA 0.290 (9) 0.412 (5) 0.340 (5) 0.156 (7)
GS 0.000 (10) 0.000 (10) 0.000 (9) 0.000 (10)
LO 0.929 (4) 0.187 (7) 0.311 (6) 0.376 (4)
PH 0.977 (3) 0.583 (3) 0.730 (3) 0.166 (6)
MT 0.400 (8) 0.002 (9) 0.004 (8) 0.002 (9)
PU 0.962 (5) 0.665 (2) 0.779 (2) 0.659 (2)
RF 1.000 (1) 0.090 (8) 0.164 (7) 0.047 (8)
SVM 0.990 (2) 0.213 (6) 0.350 (5) 0.189 (5)

(j) The Knox project (10%)

ILA Precision Recall F1 TP rate (deleted)

TF 0.867 (6) 0.451 (7) 0.594 (5) 0.447 (5)
TS 0.913 (5) 0.755 (2) 0.826 (2) 0.759 (1)
WA 0.207 (9) 0.627 (6) 0.312 (6) 0.253 (8)
GS 0.000 (10) 0.000 (10) 0.000 (9) 0.000 (10)
LO 0.810 (7) 0.036 (8) 0.069 (7) 0.359 (6)
PH 0.982 (2) 0.930 (1) 0.955 (1) 0.300 (7)
MT 0.400 (8) 0.002 (9) 0.004 (8) 0.000 (9)
PU 0.956 (4) 0.730 (3) 0.827 (2) 0.725 (2)
RF 0.991 (1) 0.692 (4) 0.814 (3) 0.603 (4)
SVM 0.978 (3) 0.647 (5) 0.778 (4) 0.636 (3)

24



An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 25

Observation 3) The TS approach statistically significantly outperformed the other
ILAs in terms of the TP rate for all delete rates in the Knox project. We observed
that the TF approach is the best approach in the Avro, Tez, ZooKeeper, and Chukwa
projects in terms of the TP rate. However, in the Knox project, the TS approach
achieved the highest rank in all the delete rates. Hence, the TS approach may recover
the most missing defect-fixing commits in certain projects.

Observation 4) The PH achieved the highest rank (statistically significantly out-
performing the ILAs that are placed at lower ranks) in terms of the recall, or F1
in 32 out of 40 cases between the delete rates of 10% and 40%. Tables 6(b), 6(d),
6(f), 6(h), and 6(j) list the results on the datasets with the delete rate of 10%. The
PH achieved the highest rank on the recall and F1 in all the projects. We observed
similar results between the delete rates of 10% and 40% (32 out of 40 cases6). This
result implies that the PH detects many defect-fixing commits (recall) while keeping
the number of false-positive defect-fixing commits moderate (F1). However, the PH
achieved statistically significantly lower recall and F1 in the datasets with the delete
rate of 50% except for one case and TP rate in all delete rates compared with the TF
or TS approach. Hence, the PH potentially overlooks missing defect-fixing commits
compared with the TF or TS approach.

Observation 5) The RF approach achieved the highest rank in terms of the pre-
cision in 22 out of 25 cases. Except for the Tez project with delete rates of 10%,
20%, and 50%, the RF approach achieved the highest rank on precision. This result
implies that the RF approach prevents false-positive defect-fixing commits. Indeed,
the median precision values are over 0.900. Hence, the RF approach could recover
missing defect-fixing commits accurately. However, the recall values and ranks are
low. Hence, the RF approach may overlook many defect-fixing commits. Note that
the SVM approach achieved the highest or second highest rank in 19 out of 25 cases.
Hence, the SVM approach could also recover missing defect-fixing commits accu-
rately.

6 Here a case indicates a cell in the table. The two evaluation measures (recall, and F1) for five projects
with four deleted rates consist of 40 cases.

25



26 Kondo et al.

Summary of RQ1

We observed that the TF approach, TS approach, PH, RF approach, and SVM
approach detected defect-fixing commits accurately. More specifically, we
found the following:

– The TF approach recovered the most missing defect-fixing commits for
all the delete rates except for the Knox project. The TS approach recov-
ered the most missing defect-fixing commits for all the delete rates in the
Knox project.

– The PH detects many defect-fixing commits while keeping the false-
positive defect-fixing commits moderate compared with the TF approach
on the datasets with the delete rates between 10% and 40% (32 out of 40
cases).

– The RF and SVM approaches achieved the highest or second highest pre-
cision in almost all cases, and therefore, these approaches can detect miss-
ing defect-fixing commits accurately.

6.2 RQ2: Which Issue-Link Algorithm is the Best to Prevent a Defect
Prediction Model From Being Affected by Missing Defect-Fixing Commits in
Defect Prediction?

Motivation and Approach: From the RQ1 results, we found that the ILAs can detect
missing defect-fixing commits. In particular, the following ILAs are well performed:

– the time filtering approach;
– the natural language text similarity approach;
– the Phantom heuristics ;
– the random forest approach;
– the support vector machine approach.

We hypothesize that such ILAs can improve the reliance of defect prediction per-
formance on a low-quality dataset by reducing the number of missing defect-fixing
commits. A low-quality dataset indicates a dataset that has many missing defect-
fixing commits. If there exist many missing defect-fixing commits, a defect prediction
model may not learn sufficient numbers of defect-inducing commits that are detected
by insufficient numbers of defect-fixing commits.

We prepared six possible scenarios: we randomly deleted 0% to 50% of links
in steps of 10% as described in Section 4. In particular, we refer to the scenario
where 0% of links are deleted as a high-quality dataset scenario; we refer to the other
scenarios (where 10%, 20%, 30%, 40%, and 50% of links are deleted) as low-quality
dataset scenarios.

We refer to the defect prediction performance on the high-quality dataset where
the KE approach is used to detect defect-fixing commits as the ground-truth defect
prediction performance. We computed the difference between the ground-truth de-
fect prediction performance and the defect prediction performance on the low-quality

26



An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 27

1: Execute defect 
prediction based 

on the explicit 
links

Explicit links 
(KE)

2: Randomly 
delete X% links

0.7 0.4 0.1 … 
AUC F1 Brier … 
0.7 0.4 0.1 … 

AUC F1 Brier … 
0.6 0.2 0.4 … 

AUC F1 Brier … 

0.7 0.4 0.1 … 
AUC F1 Brier … 

3: Apply ILA
4: Execute defect 

prediction based on 
the dataset that was 

processed by ILA

5: Compute the 
absolute difference 

between the 
ground-truth result 

and ILA results

6: Construct the 
distribution of 
differences for 

each evaluation 
measure

AUC F1 Brier … 

… 

0.7 0.4 0.1 … 
AUC F1 Brier … 
0.7 0.4 0.1 … 

AUC F1 Brier … 
0.1 0.2 0.3 … 

AUC F1 Brier … 

The ground-truth
defect prediction result

The ILA defect
prediction results (20)

The differences of defect
prediction results

The distributions of
differences

Repeat this process 20 times

Repeat this process for each ILA for each delete rate

7: Apply the Scott-
Knott ESD test to 
compare ILAs for 
each evaluation 

measure for each 
delete rate

2 3 3 … 
AUC F1 Brier … 

KE …
 

RF 3 1 1 … 

…
 

…
 

…
 

2 3 3 … 
AUC F1 Brier … 

KE …
 

RF 3 1 1 … 

…
 

…
 

…
 

2 3 3 … 
AUC F1 Brier … 

KE …
 

RF 3 1 1 … 

…
 

…
 

…
 

The Scott-Knott ESD ranks

Fig. 5: Procedure of RQ2 approach for a studied project.

datasets where we use any ILAs. If such ILAs detect missing defect-fixing commits
accurately and sufficiently, the difference would be smaller than using the KE ap-
proach only on the low-quality dataset scenarios. For example, if a defect prediction
model on a low-quality dataset where an ILA is used matches the ground-truth defect
prediction performance, such an ILA may detect all the missing defect-fixing com-
mits. Note that we investigated not only an ILA, but also all combinations of the ILAs
that are well performed in RQ1.

Figure 5 shows the procedure of the RQ2 approach for a studied project. We
describe the steps in the following. The details are described in Section 5.

1. Execute defect prediction based on the explicit links. We used the explicit links (de-
tected by the KE approach on the high-quality dataset) to detect defect-fixing com-
mits and compute the ground-truth defect prediction result in terms of six evaluation
measures (AUC, precision, recall, F1, MCC, and Brier score).

2. Randomly delete X% links. We randomly delete X% links (10% to 50% in steps of
10%) from the explicit links and prepare a low-quality dataset.

3. Apply ILA. We apply an ILA to the dataset to detect missing defect-fixing commits.

4. Execute defect prediction based on the dataset that was processed by ILA. We
execute defect prediction based on the dataset. We repeat steps 2–4 20 times to relieve
the data selection bias of deleted links. Eventually, we have 20 ILA defect prediction
results for each evaluation measure.

5. Compute the absolute difference between the ground-truth result and ILA results.
We compute the absolute difference between the ground-truth defect prediction result
and the ILA defect prediction results. As we have 20 ILA defect prediction results,
this process results in 20 differences for each evaluation measure.

6. Construct the distribution of differences for each evaluation measure. As each of
the evaluation measures has 20 results, we consider these 20 results as a distribution

27



28 Kondo et al.

Table 7: The median absolute differences between the ground-truth result and the ILA
results in the Avro project with the delete rate of 50%.

ILA AUC F1 Pre Rec MCC Brier COUNT

KE 0.028 (3) 0.027 (3) 0.018 (5) 0.061 (3) 0.039 (3) 0.018 (4) 0 (0)
TF 0.018 (2) 0.011 (1) 0.007 (1) 0.030 (1) 0.016 (1) 0.008 (1) 6 (5)
TS 0.031 (2) 0.014 (1) 0.008 (3) 0.030 (2) 0.019 (2) 0.008 (2) 6 (1)
PH 0.021 (2) 0.019 (1) 0.011 (3) 0.030 (2) 0.027 (2) 0.016 (4) 5 (1)
RF 0.044 (5) 0.035 (3) 0.021 (6) 0.061 (3) 0.047 (3) 0.014 (4) 0 (0)
SVM 0.026 (4) 0.025 (3) 0.016 (5) 0.061 (3) 0.032 (4) 0.014 (3) 1 (0)
TF,TS 0.021 (2) 0.018 (1) 0.012 (3) 0.030 (2) 0.026 (2) 0.010 (2) 6 (1)
TF,PH 0.016 (1) 0.015 (1) 0.010 (3) 0.030 (2) 0.022 (2) 0.009 (1) 6 (3)
TF,RF 0.020 (2) 0.018 (1) 0.014 (3) 0.030 (2) 0.026 (2) 0.011 (2) 6 (1)
TF,SVM 0.017 (2) 0.020 (1) 0.011 (3) 0.030 (2) 0.028 (2) 0.011 (2) 6 (1)
TS,PH 0.022 (2) 0.017 (1) 0.010 (2) 0.061 (2) 0.024 (2) 0.009 (2) 6 (1)
TS,RF 0.030 (3) 0.021 (1) 0.014 (3) 0.030 (3) 0.030 (2) 0.010 (2) 4 (1)
TS,SVM 0.019 (2) 0.016 (1) 0.010 (2) 0.061 (3) 0.023 (2) 0.009 (2) 5 (1)
PH,RF 0.029 (3) 0.018 (1) 0.011 (3) 0.061 (3) 0.023 (2) 0.017 (4) 3 (1)
PH,SVM 0.023 (3) 0.017 (1) 0.010 (3) 0.061 (3) 0.023 (2) 0.017 (4) 3 (1)
RF,SVM 0.033 (4) 0.015 (1) 0.012 (3) 0.061 (2) 0.022 (2) 0.021 (4) 4 (1)
TF,TS,PH 0.014 (1) 0.016 (1) 0.010 (2) 0.030 (2) 0.023 (2) 0.010 (2) 6 (2)
TF,TS,RF 0.025 (3) 0.021 (2) 0.014 (4) 0.030 (3) 0.031 (3) 0.008 (2) 3 (0)
TF,TS,SVM 0.021 (2) 0.017 (1) 0.011 (3) 0.030 (1) 0.025 (2) 0.012 (2) 6 (2)
TF,PH,RF 0.016 (1) 0.016 (1) 0.010 (2) 0.030 (1) 0.022 (2) 0.008 (2) 6 (3)
TF,PH,SVM 0.034 (3) 0.017 (1) 0.011 (3) 0.045 (2) 0.025 (2) 0.007 (2) 5 (1)
TF,RF,SVM 0.024 (3) 0.017 (1) 0.010 (3) 0.030 (2) 0.024 (2) 0.011 (2) 5 (1)
TS,PH,RF 0.017 (2) 0.017 (1) 0.010 (2) 0.030 (2) 0.025 (2) 0.007 (1) 6 (2)
TS,PH,SVM 0.023 (2) 0.015 (1) 0.010 (2) 0.030 (2) 0.023 (1) 0.008 (2) 6 (2)
TS,RF,SVM 0.024 (2) 0.019 (1) 0.012 (2) 0.045 (2) 0.027 (2) 0.009 (2) 6 (1)
PH,RF,SVM 0.027 (3) 0.010 (1) 0.007 (2) 0.045 (3) 0.015 (2) 0.018 (4) 3 (1)
TF,TS,PH,RF 0.024 (2) 0.015 (1) 0.010 (2) 0.030 (2) 0.023 (2) 0.009 (2) 6 (1)
TF,TS,PH,SVM 0.022 (2) 0.017 (1) 0.010 (3) 0.045 (2) 0.024 (2) 0.008 (2) 6 (1)
TF,TS,RF,SVM 0.025 (3) 0.017 (1) 0.012 (2) 0.030 (2) 0.024 (2) 0.006 (1) 5 (2)
TF,PH,RF,SVM 0.017 (2) 0.016 (1) 0.009 (3) 0.030 (2) 0.024 (2) 0.009 (2) 6 (1)
TS,PH,RF,SVM 0.023 (2) 0.016 (1) 0.010 (3) 0.030 (2) 0.023 (2) 0.005 (1) 6 (2)
TF,TS,PH,RF,SVM 0.024 (2) 0.020 (1) 0.013 (2) 0.030 (2) 0.028 (2) 0.009 (2) 6 (1)

of an evaluation measure. We repeat this process for each ILA for each delete rate
(10% to 50%). Eventually, each ILA has a distribution for each evaluation measure
for each delete rate.

7. Apply the Scott-Knott ESD test to compare ILAs for each evaluation measure for
each delete rate. To identify the ILA that achieves the smallest differences, we apply
the Scott-Knott ESD test to the distributions of all ILAs for each evaluation measure
for each delete rate.

In these steps, the execution time of defect prediction (Strep 4) is remarkably
long. In this paper, we repeated this step 20 times for 31 ILAs (all combinations
of six ILAs), 5 studied projects, and 6 dataset scenarios. The execution time of one
repetition for an ILA, a studied project, and a dataset scenario is about 761 seconds
on a computational resource, which consists of 8 CPUs and 32 GB memory with
parallel execution. Hence, if we repeated this process 100 times similar to RQ1, the
total expected execution time would be 31 ∗ 5 ∗ 6 ∗ 100 ∗ 761 ' 819 days. To reduce
this execution time, we only repeat this process 20 times in this RQ.

28



An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 29

Table 8: The sum of the cases where the rank is higher than the rank of the KE
approach or the highest rank (the sum of the COUNT values).

ILA The sum of the COUNT values

TS,PH,RF,SVM 111
TS,PH,RF 110
TF,RF,SVM 106
TS,RF 104
TF,TS,SVM 103
TF,TS,PH,SVM 101
TS,PH 100
TF,TS,PH,RF 98
TF,TS,PH 97
TF,TS,RF,SVM 96
TF,TS,PH,RF,SVM 95
TS 94
TF,PH,RF 94
TF,TS 93
TS,PH,SVM 93
TF,PH 91
TF,SVM 91
TF,PH,RF,SVM 91
TS,RF,SVM 90
TF,TS,RF 88
TF,PH,SVM 88
PH,RF,SVM 88
TF 84
TS,SVM 84
TF,RF 83
PH,SVM 83
PH,RF 81
RF,SVM 80
PH 73
RF 69
SVM 66
KE 56

Results: Observation 6) The combination of the TS, PH, RF, and SVM ap-
proaches achieved the highest rank or statistically significantly reduces the ab-
solute differences the most compared with the KE approach. To understand this
observation easily, we first describe the result in an experimental setting. Table 7 lists
the median absolute differences between the ground-truth result and the ILA results
in the Avro project with the delete rate of 50%. The values in parentheses show the
ranks that were computed by the Scott-Knott ESD test across the ILAs. The gold cells
indicate the cases where the rank is the highest (rank 1) across the ILAs. The cyan
cells indicate the cases where the rank is higher than the rank of the KE approach.
The COUNT column indicates the numbers of gold and cyan cells for each row; the
values in parentheses indicate the number of gold cells only. We observed that 18 of
the ILAs statistically significantly reduce the absolute differences for all the evalua-
tion measures (i.e., the values in the COUNT column were six). Hence, these ILAs
work well at reducing the absolute differences across the ILAs in this experimental
setting.

29



30 Kondo et al.

Table 9: All the median absolute differences between the ground-truth result and the
results of the combination of TS, PH, RF, and SVM approaches.

Project Delete rate AUC F1 Pre Rec MCC Brier COUNT

10 0.016 (1) 0.014 (1) 0.008 (1) 0.030 (1) 0.020 (1) 0.010 (2) 6 (5)
20 0.015 (2) 0.013 (1) 0.008 (1) 0.045 (1) 0.018 (1) 0.008 (2) 5 (4)

Avro 30 0.014 (1) 0.012 (1) 0.006 (1) 0.030 (1) 0.018 (1) 0.008 (1) 6 (6)
40 0.027 (2) 0.011 (2) 0.009 (2) 0.045 (1) 0.016 (2) 0.012 (3) 5 (1)
50 0.023 (2) 0.016 (1) 0.010 (3) 0.030 (2) 0.023 (2) 0.005 (1) 6 (2)

10 0.009 (1) 0.016 (1) 0.013 (1) 0.047 (2) 0.016 (1) 0.003 (1) 5 (5)
20 0.006 (1) 0.024 (2) 0.019 (4) 0.041 (3) 0.026 (2) 0.002 (2) 1 (1)

Tez 30 0.010 (2) 0.017 (1) 0.020 (3) 0.029 (1) 0.020 (1) 0.004 (2) 5 (3)
40 0.008 (2) 0.024 (1) 0.026 (2) 0.041 (2) 0.024 (1) 0.005 (3) 4 (2)
50 0.010 (3) 0.029 (2) 0.022 (2) 0.053 (5) 0.032 (1) 0.005 (3) 2 (1)

10 0.008 (4) 0.009 (3) 0.010 (3) 0.020 (1) 0.013 (2) 0.007 (4) 2 (1)
20 0.006 (1) 0.017 (2) 0.013 (1) 0.020 (2) 0.020 (3) 0.005 (1) 4 (3)

ZooKeeper 30 0.006 (1) 0.010 (1) 0.012 (3) 0.017 (1) 0.011 (1) 0.008 (4) 6 (4)
40 0.006 (1) 0.010 (1) 0.012 (2) 0.027 (1) 0.012 (1) 0.006 (2) 6 (4)
50 0.008 (3) 0.013 (2) 0.015 (3) 0.027 (2) 0.017 (2) 0.009 (3) 6 (0)

10 0.014 (3) 0.026 (3) 0.021 (4) 0.026 (2) 0.036 (2) 0.009 (3) 0 (0)
20 0.006 (1) 0.027 (2) 0.024 (2) 0.026 (2) 0.039 (2) 0.009 (3) 4 (1)

Chukwa 30 0.014 (1) 0.026 (2) 0.028 (3) 0.026 (2) 0.039 (3) 0.010 (2) 3 (1)
40 0.013 (3) 0.020 (1) 0.017 (3) 0.051 (3) 0.030 (1) 0.006 (3) 5 (2)
50 0.017 (4) 0.028 (2) 0.028 (3) 0.026 (1) 0.043 (1) 0.007 (1) 6 (3)

10 0.007 (3) 0.013 (2) 0.007 (1) 0.041 (2) 0.020 (1) 0.007 (3) 4 (2)
20 0.006 (1) 0.006 (1) 0.009 (2) 0.033 (1) 0.008 (1) 0.008 (3) 5 (4)

Knox 30 0.007 (1) 0.009 (1) 0.007 (1) 0.041 (3) 0.015 (1) 0.004 (4) 5 (4)
40 0.007 (2) 0.008 (1) 0.007 (1) 0.026 (1) 0.012 (1) 0.006 (2) 5 (4)
50 0.005 (1) 0.016 (2) 0.007 (1) 0.041 (4) 0.026 (4) 0.005 (1) 5 (3)

Table 8 lists the summation of all the COUNT values for each ILA. As we used
six evaluation measures in the five projects with five delete rates, the maximum sum-
mation value is 150. Indeed, we observed that the combination of TS, PH, RF, and
SVM approaches achieved 111, which is the highest value. This result implies that
this combination statistically significantly reduces the absolute differences compared
with the KE approach or at least achieved the highest rank.

Observation 7) All ILAs statistically significantly reduced the absolute differences
compared with the KE approach. Table 8 indicates that the KE approach, which is
the baseline, achieved 56, which is the smallest value. Hence, the ILAs statistically
significantly reduced the absolute differences compared with the KE approach.

Observation 8) The combination of the TS, PH, RF, and SVM approaches
achieve better results in the lower-quality dataset scenarios while it may achieve
worse results in the higher-quality dataset scenarios. Table 9 lists all the median
absolute differences of the combination of TS, PH, RF, and SVM approaches with
the Scott-Knott ESD test results. In the Chukwa project, the numbers of cyan and
gold cells with the delete rate of 10% were zero. In addition, the numbers in the Tez
project with the delete rate of 20% were one and one; the numbers in the ZooKeeper
project with the delete rate of 10% were two and one. This result implies that the best
combination of ILAs may be more suitable for the lower-quality dataset while it may
achieve worse results in certain projects with higher-quality datasets.

30



An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 31

Summary of RQ2

We observed that the combination of the TS, PH, RF, and SVM approaches is
the best at reducing the absolute differences compared with the ground-truth
defect prediction performance. More specifically,

– The combination achieved the smallest or smaller absolute differences
from the ground-truth defect prediction performance the most frequently.

– The combination may be more suitable for the lower-quality dataset sce-
nario.

– All the ILAs statistically significantly reduce the absolute differences
compared with the KE approach.

7 Discussion

7.1 Can the RF Approach Detect Missing Defect-Fixing Commits in the
High-Quality Dataset?

From the RQ1 result, the RF approach achieves the highest precision (e.g., 1.000);
hence, we suppose that the RF approach can identify new defect-fixing commits that
are not detected by the KE approach in the high-quality dataset scenario. Table 10
lists the links of newly identified defect-fixing commits and issue ids in the high-
quality dataset. The non-green cells are actual links that were confirmed manually by
two of the authors.

Observation 9) The RF approach identified several missing defect-fixing commits.
For example, in the Avro project, the RF approach identified the missing defect-
fixing commit 7eaba5aa that links with AVRO-555. The commit message includes
AVR0-555, which uses 0 instead of O. It is easy for humans to detect this missing
defect-fixing commit; however, it is difficult for tools to interpret AVR0 as AVRO. In the
Tez project, the RF approach identified the missing defect-fixing commit a0d63ed05
that links with TEZ-3001. This commit message includes an issue id of TEZ-2496
that is not labeled Bug. However, a comment of TEZ-3001 describes that the patch
of TEZ-2496 will fix the issue of TEZ-3001. The RF approach can identify such a
complex link as well.

7.2 Why Does the TF Approach Generally Work Well in Detecting Defect-Fixing
Commits?

Observation 10) Developing software products is conducted in a short time interval
over multiple occurrences. Figure 6 shows the number of appearances of each issue
report label for each month between the initial commit month to the end of 2013
in the Avro project. We classified issue report labels into each month based on the
dates of their linked commits. We show their labels (e.g., Bug, Improvement, and
New Feature) as line plots. Note that we allow the same issue report label to be

31



32 Kondo et al.

Table 10: The links of newly identified missing defect-fixing commits and issue ids
by the RF approach in the high-quality dataset. The non-green cells are actual links
that were confirmed manually by two of the authors.

Answer Issue ID Commit Hash

AVRO-4 9b14a2a7
AVRO-14 e6d1fca4
AVRO-262 1acc9913
AVRO-401 79c09800
AVRO-555 7eaba5aa
AVRO-656 50768496
AVRO-718 e623053d

Avro AVRO-746 34d6f3ac
AVRO-900 d7dbac1a
AVRO-1077 5e8664c1
AVRO-1123 196011b4
AVRO-1131 eaa43dbc
AVRO-1140 ab5eb854
AVRO-1251 267bda89
AVRO-1320 258f800d
AVRO-1540 0478e9ce

TEZ-243 a167e861e
TEZ-254 778ad2438
TEZ-258 c35702d6f
TEZ-739 ea345bab5
TEZ-740 9138f7906
TEZ-846 816e2e5a9
TEZ-924 aca83090e

Tez TEZ-2479 4e57a922b
TEZ-2479 c1d334b4d
TEZ-2924 40e864d14
TEZ-3001 a0d63ed05
TEZ-3423 cbd4eacb0
TEZ-1963 4bc64b5c3
TEZ-2046 a6bfc1ad3
TEZ-2046 5b2f011f1

ZOOKEEPER-55 1d2a7863
ZOOKEEPER-76 f1f13a37

ZooKeeper ZOOKEEPER-138 5d56e6d2
ZOOKEEPER-181 03f0f816
ZOOKEEPER-554 e8d31e67
ZOOKEEPER-1943 86ebdc9a

Chukwa CHUKWA-117 47f2f79
CHUKWA-411 9b5ee68

Knox KNOX-71 ad693b0e7

counted repeatedly if such an issue report links to two or more commits. The vertical
dotted lines indicate the month in which a new version was released as described on
the Avro release page [2].

We observed that each label has spikes around release dates. This result implies
that developers commit their addition/modification/deletion related to issue reports
in a short time interval. In addition, we observed many commits that correspond
to issue reports labeled Bug are gathered around a short time interval through our
manual analysis on the Git repository. We observed the same tendency on the Tez

32



An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 33

2
0

0
9

-4 5 6 7 8 9
1

0
1

1
1

2
2

0
1

0
-1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
2

0
1

1
-1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
2

0
1

2
-1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
2

0
1

3
-1 2 3 4 5 6 7 8 9
1

0
1

1
1

2

Date

0

5

10

15

20

25

30

35

40

45

N
u
m

b
e
r 

o
f 

A
p
p
e
a
ra

n
ce

s 
o
f

Is
su

e
 R

e
p
o
rt

 L
a
b
e
ls

Bug

Improvement

New Feature

Sub-task

Task

Test

Wish

Fig. 6: The number of appearances of each issue report label for each month between
the initial commit month to the end of 2013 in the Avro project.

and ZooKeeper projects7. This may be a reason why the TF approach generally works
well.

7.3 Which Time Interval is the Best to Detect Defect-Fixing Commits?

Observation 11) The 10-minute time interval is the best setting to detect defect-
fixing commits in our studied projects. Table 11 indicates the performance of the
TF approach in terms of detecting defect-fixing commits in different time intervals.
The gold cells indicate over 0.7. The values in the parentheses show the ranks that
were computed by the Scott-Knott ESD test for each evaluation measure across five
time intervals. The delete rate is 50%. We observed two findings: the smaller the
time interval, the better the performance in terms of precision; the larger the time
interval, the better the performance in terms of recall and the TP rate (deleted). This
is because these evaluation measures are the trade-off. Hence, we focused on the
harmonic evaluation measure, F1. As the TF approach does not work well in the
Knox project (RQ1), we only studied the other four projects.

The time intervals of 10 and 30 minutes achieved rank 1 once in the Scott-Knott
ESD test. The time interval of 5 minutes achieved rank 1 twice. However, the time
interval of 5 minutes achieved rank 4 in the Tez project. Although the time interval of
10 minutes achieved rank 1 once, it achieved rank 2 in the other projects. Therefore,
we concluded that the time interval of 10 minutes is well balanced. This result implies
that the 10-minute time interval detects many defect-fixing commits while keeping
the number of false-positive defect-fixing commits low.

7 The Chukwa project does not show the dates of all release dates. The TF approach does not work well
in the Knox project. Hence, we ignored these projects in this analysis.

33



34 Kondo et al.

Table 11: The performance of the time filtering approach in terms of detecting defect-
fixing commits in five different time intervals with the delete rate of 50%.

(a) The Avro project

Time Interval (Min.) Precision Recall F1 TP rate (deleted)

5 0.839 (1) 0.774 (5) 0.805 (1) 0.777 (5)
10 0.757 (2) 0.821 (4) 0.788 (2) 0.824 (4)
30 0.626 (3) 0.860 (3) 0.724 (3) 0.860 (3)
60 0.528 (4) 0.877 (2) 0.660 (4) 0.876 (2)
120 0.465 (5) 0.897 (1) 0.612 (5) 0.895 (1)

(b) The Tez project

Time Interval (Min.) Precision Recall F1 TP rate (deleted)

5 0.894 (1) 0.660 (5) 0.760 (4) 0.664 (5)
10 0.847 (2) 0.776 (4) 0.810 (2) 0.777 (4)
30 0.768 (3) 0.858 (3) 0.811 (1) 0.858 (3)
60 0.706 (4) 0.884 (2) 0.785 (3) 0.884 (2)
120 0.622 (5) 0.909 (1) 0.738 (5) 0.909 (1)

(c) The ZooKeeper project

Time Interval (Min.) Precision Recall F1 TP rate (deleted)

5 0.955 (1) 0.700 (5) 0.808 (2) 0.701 (5)
10 0.908 (2) 0.771 (4) 0.834 (1) 0.774 (4)
30 0.784 (3) 0.816 (3) 0.800 (3) 0.816 (3)
60 0.716 (4) 0.843 (2) 0.774 (4) 0.844 (2)
120 0.653 (5) 0.856 (1) 0.741 (5) 0.856 (1)

(d) The Chukwa project

Time Interval (Min.) Precision Recall F1 TP rate (deleted)

5 0.828 (1) 0.652 (5) 0.729 (1) 0.651 (5)
10 0.730 (2) 0.706 (4) 0.718 (2) 0.704 (4)
30 0.605 (3) 0.760 (3) 0.674 (3) 0.760 (3)
60 0.560 (4) 0.783 (2) 0.653 (4) 0.783 (2)
120 0.515 (5) 0.810 (1) 0.630 (5) 0.810 (1)

(e) The Knox project

Time Interval (Min.) Precision Recall F1 TP rate (deleted)

5 0.893 (1) 0.392 (5) 0.545 (5) 0.394 (5)
10 0.867 (2) 0.451 (4) 0.594 (4) 0.452 (4)
30 0.808 (3) 0.575 (3) 0.672 (3) 0.572 (3)
60 0.759 (4) 0.637 (2) 0.692 (1) 0.636 (2)
120 0.683 (5) 0.679 (1) 0.681 (2) 0.677 (1)

7.4 Do ILAs Affect the Effort-Aware Defect Prediction Performance Measures?

Motivation and Approach: Just-in-time defect prediction models help in identifying
whether a commit is likely to be defective. If such a commit is identified as defective,
developers use their test effort to inspect this commit to modify the defect; however,
their test effort is limited. Hence, considering the test effort is also important to eval-
uate defect prediction models.

34



An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 35

To evaluate this perspective, we can use effort-aware measures [39, 58]. Gener-
ally, developers need more test effort to inspect more commits. In addition, large-
size commits (e.g., including many added/deleted lines) need more test effort to be
inspected than small-size commits. Hence, effort-aware measures use the number
of commits and lines that are inspected by developers to evaluate defect prediction
models. In this discussion, we investigate whether ILAs affect this perspective in
just-in-time defect prediction.

We computed effort-aware measures for the results of RQ2. Similar to RQ2, we
investigated the difference between the ground truth result and the ILA results. We
use four effort-aware evaluation measures that were applied by the prior study [58]:
IFA, PII@L, CostEffort@L, and Norm(Popt).

IFA measures the number of commits that need to be inspected before the first
defect-inducing commit is identified. The smaller IFA implies that defect prediction
models identify defect-inducing commits at an early time. PII@L and CostEffort@L
measure the number of commits that need to be inspected and the number of iden-
tified defect-inducing commits, respectively, when developers can inspect L lines of
code. We used the same L as the prior study [58]: 20%, 1000, and 2000. Norm(Popt)
indicates the similarity between the prediction result and the optimized case where
defect prediction models perfectly predict defect-inducing commits according to the
number of lines of code [39]. The range is between 0 to 1; the higher the value, the
better the prediction result is implied.

Results: Observation 12) The KE approach is the best approach in terms of the
effort-aware evaluation measures. In RQ2, the KE approach is the worst approach.
However, no ILAs achieved a higher sum of the COUNT values than the KE approach
in terms of the effort-aware evaluation measures (Table 12). As a result, all ILAs
may not work well in terms of the effort-aware evaluation measures. However, the
difference between the largest sum of the COUNT values and the smallest one is
32 (166-134) in this analysis while that in RQ2 is 55 (111-56). Also, because we
used eight effort-aware evaluation measures (PII@L and CostEffort@L have three
variants), the maximum value is 200 while that in RQ2 is 150. If we consider this
difference, the difference ratio between the largest value and the smallest value in
RQ2 is two times larger than this analysis. Hence, the difference between the best
approach and the worst approach in terms of the effort-aware evaluation measures
may be small. Future studies are necessary to investigate the relationship between
ILAs and effort-aware evaluation measures.

7.5 The False-positive/negative Defect-fixing Commits in the Ground Truth Data

As we described in Section 5.1, we found that our ground truth data (defect-fixing
commits) are accurate through manual inspection. However, there exist a few false-
positive/negative defect-fixing commits.

For example, the commit cf3318e1b in the Tez project is labeled a defect-fixing
commit. However, this is a false-positive defect-fixing commit. The commit message
includes two issue ids: TEZ-1594 labeled Sub-task and TEZ-8 labeled Bug. As the
KE approach links this commit to these two issue reports, this commit is referred to

35



36 Kondo et al.

Table 12: The sum of the cases where the rank is higher than the rank of the KE
approach or the highest rank (the sum of the COUNT values).

ILA The sum of the COUNT values

KE 166
TF,TS,SVM 157
TF,PH,SVM 156
TF,TS,PH 155
SVM 154
TS,PH 154
TF,PH,RF,SVM 153
TF,TS 152
TF,PH 152
TF,TS,PH,SVM 152
TF,TS,RF,SVM 152
RF,SVM 149
TF,PH,RF 149
TS,PH,SVM 149
TF,RF 148
TS,PH,RF,SVM 148
RF 147
TF,SVM 145
TS,RF 145
PH,RF 145
TF,RF,SVM 144
PH,RF,SVM 144
TS,SVM 143
TF,TS,PH,RF,SVM 143
TF 142
PH 142
TF,TS,RF 142
TF,TS,PH,RF 142
TS,RF,SVM 141
TS,PH,RF 140
PH,SVM 138
TS 134

as a defect-fixing commit; however, the link to TEZ-8 is a false-positive link because
TEZ-8 is not directly related to this commit. Hence, this commit is a false-positive
defect-fixing commit.

The commit 0b74bd5e in the Avro project is an example of a false-negative
defect-fixing commit. This commit does not include any issue ids in its commit mes-
sage. However, CHANGES.txt, which is a changed file, includes an issue id labeled
Bug. Hence, this commit should be a defect-fixing commit.

Finally, this manual inspection provides us with an interesting suggestion. Our ba-
sic restriction (Section 5.2) may exclude defect-fixing commits that do not fix source
code (i.e., noise). For example, the commit message of the commit c89e352e0 in
the Tez project includes an issue id, TEZ-2885 labeled Bug. Hence, prior KE ap-
proaches may link this commit and the issue report. However, this commit only mod-
ifies CHANGES.txt while the actual defect-fixing commit is the commit 6eb2cb551.
This may occur if developers forget to modify CHANGES.txt. This kind of defect-
fixing commit should be excluded from the defect prediction research. Because our

36



An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 37

basic restriction excludes these commits, we suggest researchers and practitioners use
the basic restriction at least. This kind of restriction is employed by prior work [50].

7.6 Answer to This Paper: Which ILAs Should We Use?

In summary, researchers and practitioners need to select the ILAs according to their
particular purpose. If researchers and practitioners want to evaluate the defect predic-
tion models in the low-quality dataset scenario, we recommend using the best ILA
in terms of the absolute differences with the ground-truth defect prediction perfor-
mance: the combination of the TS, PH, RF, and SVM approaches. This is because,
in the low-quality dataset scenarios, this ILA can reduce the absolute differences of
defect prediction performance from that in the high-quality dataset scenario with the
KE approach (RQ2).

If researchers and practitioners investigate the defect-fixing commits, we recom-
mend using the ILA that achieves the highest precision: the RF approach because
researchers and practitioners do not need to worry about false-positive defect-fixing
commits (RQ1).

If researchers and practitioners want to identify almost all missing defect-fixing
commits, we recommend using the TF approach or TS approach because these ILAs
achieve the highest TP rate in different projects (RQ1) while being a very simple
approach. However, the precision value is lower than those of the other accurate ILAs.
Researchers and practitioners need to consider false-positive defect-fixing commits.

Finally, in defect prediction, we recommend using the basic restriction to exclude
noise of defect-fixing commits. In particular, considering the dates of the commit and
the issue report is a simple but effective approach to detect defect-fixing commits.

Summary

After applying the KE approach, we recommend using the ILAs as the fol-
lowing criteria to recover missing defect-fixing commits:

– If the aim is to evaluate the defect prediction models in the low-quality
dataset scenario, we recommend using the combination of the TS, PH,
RF, and SVM approaches.

– If the aim is to investigate the defect-fixing commits accurately, we rec-
ommend using the RF approach.

– If the aim is to identify almost all missing defect-fixing commits, we rec-
ommend using the TF approach or the TS approach.

– Even if no aims, we recommend using the basic restriction at least.

8 Threats to Validity

37



38 Kondo et al.

8.1 Construct Validity

The reliability of the issue reports in the studied issue-tracking system (i.e., JIRA) is
a threat in this study. Ramler et al. [61] described this challenge. Herzig et al. [34]
reported that 39% of files that are labeled as defective are not defective on average.
Bachmann et al. [12] reported that some defects are only reported on the mailing
list. In addition, such defects are very important because the core developers in the
Apache projects use the mailing list. Future studies are necessary to investigate the
quality of issue-tracking system to improve the reliability of our findings.

Defect-fixing commits could include addition/modification/deletion that is not
related to defect fixing. For example, Mills et al. [51] reported that around 63.1%
(848/1,344) of modified files in defect-fixing commits are not related to defect fix-
ing. If we removed such files from the defect-fixing commits, this might result in
different defect prediction performance for each ILA. Future studies are necessary to
investigate whether our results are consistent with removing such files.

We used the results of the keyword extraction approach as our ground-truth data.
The keyword extraction approach uses a regular expression to extract issue ids from
commit messages. Unfortunately, this process may induce false-positive/negative defect-
fixing commits. Such commits would affect our experimental results, though we man-
ually inspected the accuracy of ground truth data and found the accuracy is high.

To execute the natural language text similarity approach, we removed the issue ids
from commit messages on the missing defect-fixing commits to make our experimen-
tal setting closer to a practical situation. However, commit messages also frequently
include issue report titles because of their commit rule [5]. This JIRA title may make
our experimental setting artificial and unfair. We kept the JIRA title because we as-
sume that developers forget to add issue ids only.

In this paper, we mainly focus on the ILAs while defect prediction includes sev-
eral factors such as the process of detecting defect-inducing commits. Hence, the
results of our study are restricted by our experimental setting in defect prediction.
Future studies are necessary to investigate the relationship between ILAs and the
other factors in defect prediction.

8.2 External Validity

To generalize our results, we applied our experiments to five open-source software
projects on the Apache Software Foundation. These studied projects contain two do-
mains. However, all the projects are Apache projects and have high-quality commit
messages. Future studies are necessary to investigate whether our results generalize
to other projects.

We carefully chose our studied ILAs from prior studies that were collected by
our systematic literature study with the snowballing approach. However, we decided
not to use a few ILAs and we may have overlooked a few prior studies that proposed
ILAs. Future studies are necessary to investigate such ILAs with software projects in
which we can use all necessary information.

38



An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 39

8.3 Internal Validity

We summarized our validation technique and ILAs as Python packages [45, 46]. In
addition, we made the replication package [44]. Researchers and practitioners may
easily repeat our experiments.

We manually investigated the correctness of the identified links in Section 7.1.
This investigation was conducted by two of the authors, and we double-checked the
result. However, the result may include mistakes. In addition, we manually inspected
the accuracy of the ground truth data. This manual inspection has been carefully done.
However, it may include mistakes.

To remove the merge commits, we used the --no-merges option of the git log
command [31]. Hence, the accuracy to identify the merge commits depends on this
option.

9 Conclusion

The impact of false-positive/negative defect-inducing commits on the defect predic-
tion performance is important when evaluating defect prediction models. To reduce
the number of false-positive/negative defect-inducing commits, many prior studies
have proposed ILAs to detect defect-fixing commits accurately [10, 12, 17, 18, 26,
49, 55, 63, 69, 71–74, 82, 84, 85]. However, challenges still exist, such as dataset
inconsistency and small comparisons. Our work is the first large-scale study to evalu-
ate the ILAs on the same experimental settings. In addition, we summarized the prior
ILAs as our related work through our systematic literature study.

In the following, we summarize the main recommendations. We recommend se-
lecting ILAs according to the particular purpose.

Recommendation 1: For researchers and practitioners who need to evalu-
ate defect prediction models in the low-quality dataset scenario, we recommend
using the combination of the natural language text similarity, Phantom heuris-
tics, random forest, and support vector machine approaches. Our experiments in
RQ2 show that the studied ILAs prevented the defect prediction model from being af-
fected by missing defect-fixing commits. In particular, the combination of the natural
language text similarity, Phantom heuristics, random forest, and support vector ma-
chine approaches achieved the most similar defect prediction performance with the
ground-truth defect prediction performance across all the studied ILAs. If researchers
and practitioners use this combination, they would not need to worry about the impact
of missing defect-fixing commits to defect prediction performance.

Recommendation 2: For researchers and practitioners who need defect-fixing
commits without false-positive defect-fixing commits, we recommend using the
random forest approach. Our experiments in RQ1 have shown that the random for-
est approach achieved the highest precision. Hence, using this ILA rarely induces
false-positive defect-fixing commits while reducing missing defect-fixing commits.

Recommendation 3: For researchers and practitioners who need defect datasets
without missing defect-fixing commits, we recommend using the time filtering
approach or the natural language text similarity approach. Our experiments in

39



40 Kondo et al.

RQ1 have shown that the time filtering approach and the natural language text simi-
larity approach performed the highest TP rate compared with the other accurate ILAs
in different projects. Hence, using the time filtering approach or the natural language
text similarity approach reduces the number of missing defect-fixing commits. In
addition, these ILAs are very simple. Note that when using these approaches, re-
searchers and practitioners need to consider false-positive defect-fixing commits.

Recommendation 4: Considering the dates of the commit and the issue report
help exclude noise of defect-fixing commits. Our manual inspection discussed in
Section 7.5 shows that our basic restriction can exclude defect-fixing commits that
do not fix source code. Hence, using our basic restriction that uses the dates excludes
such noise of defect-fixing commits for defect prediction.

Acknowledgment

This work has been supported by JSPS KAKENHI Japan (Grant Numbers: JP19J23477
and JP18H03222) and JSPS International Joint Research Program with SNSF (Project
“SENSOR”). We would like to thank Editage (www.editage.com) for English lan-
guage editing.

References

1. Agrawal, A., Menzies, T.: Is “better data” better than “better data miners”?
In: Proceedings of the 40th International Conference on Software Engineering
(ICSE), pp. 1050–1061. IEEE (2018)

2. Apache Software Foundation: Apache AvroTM Releases. URL https://avro.
apache.org/releases.html

3. Apache Software Foundation: Avro. URL https://avro.apache.org/
4. Apache Software Foundation: Chukwa. URL http://chukwa.apache.org/
5. Apache Software Foundation: HowToContribute. URL https://cwiki.
apache.org/confluence/display/ZOOKEEPER/HowToContribute

6. Apache Software Foundation: Knox. URL https://knox.apache.org/
7. Apache Software Foundation: Tez. URL https://tez.apache.org/
8. Apache Software Foundation: ZooKeeper. URL https://zookeeper.
apache.org/

9. Ayari, K., Meshkinfam, P., Antoniol, G., Di Penta, M.: Threats on building mod-
els from cvs and bugzilla repositories: The mozilla case study. In: Proceedings
of the 2007 Conference of the Center for Advanced Studies on Collaborative
Research, p. 215–228. IBM Corp. (2007)

10. Bachmann, A., Bernstein, A.: Data retrieval, processing and linking for software
process data analysis. Tech. Rep. IFI-2009.0003b (2009)

11. Bachmann, A., Bernstein, A.: Software process data quality and characteristics:
a historical view on open and closed source projects. In: Proceedings of the
Joint International and Annual ERCIM Workshops on Principles of Software
Evolution (IWPSE) and Software Evolution (Evol) Workshops (IWPSE-Evol),
pp. 119–128. ACM (2009)

40

www.editage.com
https://avro.apache.org/releases.html
https://avro.apache.org/releases.html
https://avro.apache.org/
http://chukwa.apache.org/
https://cwiki.apache.org/confluence/display/ZOOKEEPER/HowToContribute
https://cwiki.apache.org/confluence/display/ZOOKEEPER/HowToContribute
https://knox.apache.org/
https://tez.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/


An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 41

12. Bachmann, A., Bird, C., Rahman, F., Devanbu, P., Bernstein, A.: The missing
links: bugs and bug-fix commits. In: Proceedings of the 18th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE), pp.
97–106. ACM (2010)

13. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design
metrics as quality indicators. IEEE Transactions on software engineering 22(10),
751–761 (1996)

14. Bennin, K.E., Keung, J., Phannachitta, P., Monden, A., Mensah, S.: Mahakil:
Diversity based oversampling approach to alleviate the class imbalance issue in
software defect prediction. IEEE Transactions on Software Engineering 44(6),
534–550 (2017)

15. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Jour-
nal of machine learning research 13(10), 281–305 (2012)

16. Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov, V., Devanbu,
P.: Fair and balanced?: bias in bug-fix datasets. In: Proceedings of the 7th Joint
Meeting of the European Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering (ESEC/FSE),
pp. 121–130. ACM (2009)

17. Bird, C., Bachmann, A., Rahman, F., Bernstein, A.: Linkster: enabling efficient
manual inspection and annotation of mined data. In: Proceedings of the 19th
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing (FSE), pp. 369–370. ACM (2010)

18. Bissyandé, T.F., Thung, F., Wang, S., Lo, D., Jiang, L., Réveillère, L.: Empirical
evaluation of bug linking. In: Proceedings of the 17th European Conference on
Software Maintenance and Reengineering, pp. 89–98. IEEE (2013)

19. Boughorbel, S., Jarray, F., El-Anbari, M.: Optimal classifier for imbalanced data
using matthews correlation coefficient metric. PloS one 12(6), e0177,678 (2017)

20. Cohen, J.: Statistical power analysis for the behavioral sciences. Academic press
(2013)

21. Čubranić, D., Murphy, G.C.: Hipikat: Recommending pertinent software devel-
opment artifacts. In: Proceedings of the 25th International Conference on Soft-
ware Engineering (ICSE), pp. 408–418. IEEE (2003)

22. Da Costa, D.A., McIntosh, S., Shang, W., Kulesza, U., Coelho, R., Hassan, A.E.:
A framework for evaluating the results of the szz approach for identifying bug-
introducing changes. IEEE Transactions on Software Engineering 43(7), 641–
657 (2016)

23. Elkan, C., Noto, K.: Learning classifiers from only positive and unlabeled data.
In: Proceedings of the 14th International Conference on Knowledge Discovery
and Data Mining (SIGKDD), p. 213–220. ACM (2008)

24. EU: Regulation (eu) 2016/679 of the european parliament and of the council of
27 april 2016 on the protection of natural persons with regard to the processing
of personal data and on the free movement of such data, and repealing direc-
tive 95/46/ec (general data protection regulation) (text with eea relevance). The
Official Journal of the European Union (OJ) L 119, 1–88 (2016)

25. Fan, Y., Xia, X., Alencar da Costa, D., Lo, D., Hassan, A.E., Li, S.: The impact of
changes mislabeled by szz on just-in-time defect prediction. IEEE Transactions

41



42 Kondo et al.

on Software Engineering (2019). To appear
26. Fischer, M., Pinzger, M., Gall, H.: Analyzing and relating bug report data for

feature tracking. In: Proceedings of the 10th Working Conference on Reverse
Engineering (WCRE), pp. 90–99. IEEE (2003)

27. Fischer, M., Pinzger, M., Gall, H.: Populating a release history database from
version control and bug tracking systems. In: Proceedings of the 2003 Interna-
tional Conference on Software Maintenance (ICSM), pp. 23–32. IEEE (2003)

28. Fu, W., Nair, V., Menzies, T.: Why is differential evolution better than grid search
for tuning defect predictors? arXiv preprint arXiv:1609.02613 (2016)

29. Fukushima, T., Kamei, Y., McIntosh, S., Yamashita, K., Ubayashi, N.: An em-
pirical study of just-in-time defect prediction using cross-project models. In:
Proceedings of the 11th Working Conference on Mining Software Repositories
(MSR), pp. 172–181. ACM (2014)

30. German, D.M., Adams, B., Stewart, K.: cregit: Token-level blame information in
git version control repositories. Empirical Software Engineering 24(4), 2725–
2763 (2019)

31. Git community: git-log - Show commit logs. URL https://git-scm.com/
docs/git-log

32. Gyimóthy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented met-
rics on open source software for fault prediction. IEEE Transactions on Software
engineering 31(10), 897–910 (2005)

33. Herbold, S., Trautsch, A., Trautsch, F.: Issues with szz: An empirical assess-
ment of the state of practice of defect prediction data collection. arXiv preprint
arXiv:1911.08938 (2019)

34. Herzig, K., Just, S., Zeller, A.: It’s not a bug, it’s a feature: how misclassification
impacts bug prediction. In: Proceedings of the 2013 International Conference on
Software Engineering (ICSE), pp. 392–401. IEEE Press (2013)

35. Herzig, K., Zeller, A.: The impact of tangled code changes. In: Proceedings
of the 10th Working Conference on Mining Software Repositories (MSR), pp.
121–130. IEEE (2013)

36. Jung, Y., Oh, H., Yi, K.: Identifying static analysis techniques for finding non-fix
hunks in fix revisions. In: Proceedings of the ACM First International Workshop
on Data-intensive Software Management and Mining, pp. 13–18. ACM (2009)

37. Kamei, Y., Fukushima, T., McIntosh, S., Yamashita, K., Ubayashi, N., Hassan,
A.E.: Studying just-in-time defect prediction using cross-project models. Empir-
ical Software Engineering 21(5), 2072–2106 (2016)

38. Kamei, Y., Shihab, E.: Defect prediction: Accomplishments and future chal-
lenges. In: Proceedings of the 23rd International Conference on Software Snal-
ysis, Evolution, and Reengineering (SANER), pp. 33–45 (2016)

39. Kamei, Y., Shihab, E., Adams, B., Hassan, A.E., Mockus, A., Sinha, A.,
Ubayashi, N.: A large-scale empirical study of just-in-time quality assurance.
IEEE Transactions on Software Engineering 39(6), 757–773 (2013)

40. Kawrykow, D., Robillard, M.P.: Non-essential changes in version histories.
In: Proceedings of the 33rd International Conference on Software Engineering
(ICSE), pp. 351–360. IEEE (2011)

42

https://git-scm.com/docs/git-log
https://git-scm.com/docs/git-log


An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 43

41. Kim, S., Whitehead Jr, E.J., Zhang, Y.: Classifying software changes: Clean or
buggy? IEEE Transactions on Software Engineering 34(2), 181–196 (2008)

42. Kim, S., Zhang, H., Wu, R., Gong, L.: Dealing with noise in defect prediction.
In: Proceedings of the 33rd International Conference on Software Engineering
(ICSE), pp. 481–490. IEEE (2011)

43. Kim, S., Zimmermann, T., Pan, K., James Jr, E., et al.: Automatic identification
of bug-introducing changes. In: Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 81–90. IEEE (2006)

44. Kondo, M.: MKmknd/EMSE2021 ILA. DOI 10.5281/zenodo.5712318. URL
https://doi.org/10.5281/zenodo.5712318

45. Kondo, M.: MKmknd/ILA. DOI 10.5281/zenodo.5573591. URL https://
doi.org/10.5281/zenodo.5573591

46. Kondo, M.: MKmknd/ILA Validation. DOI 10.5281/zenodo.5612161. URL
https://doi.org/10.5281/zenodo.5612161

47. Kondo, M., Bezemer, C.P., Kamei, Y., Hassan, A.E., Mizuno, O.: The impact of
feature reduction techniques on defect prediction models. Empirical Software
Engineering 24(4), 1925–1963 (2019)

48. Kondo, M., German, D.M., Mizuno, O., Choi, E.H.: The impact of context met-
rics on just-in-time defect prediction. Empirical Software Engineering 25(1),
890–939 (2020)

49. Le, T.D.B., Linares-Vásquez, M., Lo, D., Poshyvanyk, D.: Rclinker: automated
linking of issue reports and commits leveraging rich contextual information. In:
Proceedings of the 23rd International Conference on Program Comprehension
(ICPC), pp. 36–47. IEEE (2015)

50. McIntosh, S., Kamei, Y.: Are fix-inducing changes a moving target? a longitudi-
nal case study of just-in-time defect prediction. IEEE Transactions on Software
Engineering 44(5), 412–428 (2018)

51. Mills, C., Pantiuchina, J., Parra, E., Bavota, G., Haiduc, S.: Are bug reports
enough for text retrieval-based bug localization? In: 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pp. 381–392.
IEEE (2018)

52. Mockus, A., Votta, L.G.: Identifying reasons for software changes using historic
databases. In: Proceedings of the 2000 International Conference on Software
Maintenance (ICSM), pp. 120–130 (2000)

53. Neto, E.C., da Costa, D.A., Kulesza, U.: The impact of refactoring changes on
the szz algorithm: An empirical study. In: Proceedings of the 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pp.
380–390. IEEE (2018)

54. Neto, E.C., da Costa, D.A., Kulesza, U.: Revisiting and improving szz imple-
mentations. In: Proceedings of the 2019 International Symposium on Empirical
Software Engineering and Measurement (ESEM), pp. 1–12. IEEE (2019)

55. Nguyen, A.T., Nguyen, T.T., Nguyen, H.A., Nguyen, T.N.: Multi-layered ap-
proach for recovering links between bug reports and fixes. In: Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. ACM (2012)

43

https://doi.org/10.5281/zenodo.5712318
https://doi.org/10.5281/zenodo.5573591
https://doi.org/10.5281/zenodo.5573591
https://doi.org/10.5281/zenodo.5612161


44 Kondo et al.

56. Nguyen, H.A., Nguyen, A.T., Nguyen, T.N.: Filtering noise in mixed-purpose
fixing commits to improve defect prediction and localization. In: Proceedings of
the 24th International Symposium on Software Reliability Engineering (ISSRE),
pp. 138–147. IEEE (2013)

57. Nguyen, T.H., Adams, B., Hassan, A.E.: A case study of bias in bug-fix datasets.
In: 2010 17th Working Conference on Reverse Engineering, pp. 259–268. IEEE
(2010)

58. Ni, C., Xia, X., Lo, D., Chen, X., Gu, Q.: Revisiting supervised and unsupervised
methods for effort-aware cross-project defect prediction. IEEE Transactions on
Software Engineering (2020)

59. Pan, K., Kim, S., Whitehead, E.J.: Toward an understanding of bug fix patterns.
Empirical Software Engineering 14(3), 286–315 (2009)

60. Rahman, F., Posnett, D., Herraiz, I., Devanbu, P.: Sample size vs. bias in defect
prediction. In: Proceedings of the 9th Joint Meeting on Foundations of Software
Engineering, pp. 147–157. ACM (2013)

61. Ramler, R., Himmelbauer, J.: Noise in bug report data and the impact on defect
prediction results. In: Proceedings of the 2013 Joint Conference of the 23rd Inter-
national Workshop on Software Measurement and the 8th International Confer-
ence on Software Process and Product Measurement, pp. 173–180. IEEE (2013)

62. Rosen, C., Grawi, B., Shihab, E.: Commit guru: Analytics and risk prediction of
software commits. In: Proceedings of the 10th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE), pp. 966–969. ACM (2015)

63. Schermann, G., Brandtner, M., Panichella, S., Leitner, P., Gall, H.: Discovering
loners and phantoms in commit and issue data. In: Proceedings of the 23rd
International Conference on Program Comprehension (ICPC), pp. 4–14. IEEE
(2015)

64. scikit-learn developers: 3.2.4.3.1. sklearn.ensemble.RandomForestClassifier.
URL https://scikit-learn.org/stable/modules/generated/

sklearn.ensemble.RandomForestClassifier.html

65. scikit-learn developers: sklearn.linear model.LogisticRegression. URL
https://scikit-learn.org/stable/modules/generated/sklearn.

linear_model.LogisticRegression.html

66. scikit-learn developers: sklearn.linear model.SGDClassifier. URL
https://scikit-learn.org/stable/modules/generated/sklearn.

linear_model.SGDClassifier.html

67. scikit-learn developers: sklearn.metrics.cohen kappa score. URL
https://scikit-learn.org/stable/modules/generated/sklearn.

metrics.cohen_kappa_score.html

68. scikit-learn developers: sklearn.metrics.pairwise.cosine similarity. URL
https://scikit-learn.org/stable/modules/generated/sklearn.

metrics.pairwise.cosine_similarity.html

69. Śliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? In:
Proceedings of the 2005 International Workshop on Mining Software Reposito-
ries (MSR), pp. 1–5. ACM (2005)

70. Sparck Jones, K.: A statistical interpretation of term specificity and its applica-
tion in retrieval. Journal of documentation 28(1), 11–21 (1972)

44

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html


An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 45

71. Sun, Y., Chen, C., Wang, Q., Boehm, B.: Improving missing issue-commit
link recovery using positive and unlabeled data. In: Proceedings of the
32nd IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 147–152. IEEE Press (2017)

72. Sun, Y., Wang, Q., Li, M.: Understanding the contribution of non-source docu-
ments in improving missing link recovery: An empirical study. In: Proceedings
of the 10th ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement, pp. 1–10. ACM (2016)

73. Sun, Y., Wang, Q., Yang, Y.: Frlink: Improving the recovery of missing issue-
commit links by revisiting file relevance. Information and Software Technology
84, 33–47 (2017)

74. Sureka, A., Lal, S., Agarwal, L.: Applying fellegi-sunter (fs) model for traceabil-
ity link recovery between bug databases and version archives. In: Proceedings of
the 18th Asia-Pacific Software Engineering Conference (APSEC), pp. 146–153.
IEEE (2011)

75. Tan, M., Tan, L., Dara, S., Mayeux, C.: Online defect prediction for imbalanced
data. In: Proceedings of the 37th International Conference on Software Engi-
neering (ICSE), pp. 99–108. IEEE (2015)

76. Tantithamthavorn, C., Hassan, A.E.: An experience report on defect modelling
in practice: Pitfalls and challenges. In: Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Practice (ICSE-
SEIP), p. 286–295. ACM (2018)

77. Tantithamthavorn, C., Hassan, A.E., Matsumoto, K.: The impact of class rebal-
ancing techniques on the performance and interpretation of defect prediction
models. IEEE Transactions on Software Engineering 46(11), 1200–1219 (2018)

78. Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Ihara, A., Matsumoto, K.: The
impact of mislabelling on the performance and interpretation of defect prediction
models. In: Proceedings of the 37th International Conference on Software Engi-
neering (ICSE), pp. 812–823. IEEE (2015)

79. Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K.: Automated
parameter optimization of classification techniques for defect prediction models.
In: Proceedings of the 38th International Conference on Software Engineering,
pp. 321–332 (2016)

80. Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K.: An empirical
comparison of model validation techniques for defect prediction models. IEEE
Transactions on Software Engineering 43(1), 1–18 (2017)

81. Thomas W., S.: lscp: A lightweight source code preprocesser. URL https:
//github.com/doofuslarge/lscp

82. Tu, H., Menzies, T.: Better data labelling with emblem (and how that impacts
defect prediction). arXiv preprint arXiv:1905.01719 (2020)

83. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a
replication in software engineering. In: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, pp. 1–10
(2014)

84. Wu, R., Zhang, H., Kim, S., Cheung, S.C.: Relink: recovering links between
bugs and changes. In: Proceedings of the 19th ACM SIGSOFT Symposium and

45

https://github.com/doofuslarge/lscp
https://github.com/doofuslarge/lscp


46 Kondo et al.

the 13th European Conference on Foundations of Software Engineering (ES-
EC/FSE), pp. 15–25. ACM (2011)

85. Xie, R., Chen, L., Ye, W., Li, Z., Hu, T., Du, D., Zhang, S.: Deeplink: A code
knowledge graph based deep learning approach for issue-commit link recovery.
In: Proceedings of the 26th International Conference on Software Analysis, Evo-
lution and Reengineering (SANER), pp. 434–444. IEEE (2019)

86. Yang, X., Lo, D., Xia, X., Zhang, Y., Sun, J.: Deep learning for just-in-time defect
prediction. In: Proceedings of the International Conference on Software Quality,
Reliability and Security (QRS), pp. 17–26. IEEE (2015)

87. Yedida, R., Menzies, T.: On the value of oversampling for deep learning in soft-
ware defect prediction. IEEE Transactions on Software Engineering (2021)

88. Zhang, F., Zheng, Q., Zou, Y., Hassan, A.E.: Cross-project defect prediction us-
ing a connectivity-based unsupervised classifier. In: Proceedings of the 38th
International Conference on Software Engineering (ICSE), pp. 309–320. ACM
(2016)

46



An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 47

Appendix

A Overview of ILAs

In this Appendix, we describe the details of each of the ILAs.

A.1 Keyword Extraction (KE)

The keyword extraction approach is the simplest and most popular approach to link
issue reports with commits. Our implementation is as follows:

1. Extract issue ids from commit messages by using regular expressions.
2. Link issue reports to commits whose commit messages include issue ids.

Especially, our studied projects adhere to rules to write commit messages. For
example, developers need to write “ZOOKEEPER-jiraNumber: jiraTitle” as the
commit message in the ZooKeeper project [5]. Hence, the link rates are very high.

A.2 Time Filtering (TF)

The time filtering approach compares created/updated/resolved dates of issue reports
or its comment dates and commit or author dates of commits. Our implementation is
as follows:

1. Extract issue resolution dates and commit dates from an issue-tracking system
and a software repository.

2. Subtract the date of a commit date from an issue resolution date to compute the
difference (time interval).

3. If the time interval is less than a certain threshold, such a pair is linked.

This approach is frequently used in previous studies [55, 63, 69, 72, 74, 84]. For
example, Wu et al. [84] reported that 93% of comments were posted within 24 hours
after pushing the associated commits to the repository.

A.3 Natural Language Text Similarity (TS)

The natural language text similarity approach uses the similarity of text between
issue reports and commits. If a commit message is similar to a description and com-
ments of an issue report, such a pair would be linked.

In this approach, the preprocessing of text is important. A previous study [84]
used the following preprocessing:

1. Remove stop words (e.g., remove “the”).
2. Conduct stemming analysis (e.g., “played” would be “play”).
3. Replace words into a common synonym.

In our implementation, we improved the preprocessing as follows:

47



48 Kondo et al.

1. Make text lower case
2. Tokenize words
3. Remove punctuation
4. Remove stop words
5. Replace words into a common synonym
6. Conduct stemming analysis

After this preprocessing, we converted the text into numerical vectors based on the
TFIDF vectorization [70]. Finally, we computed the cosine similarity [68] between
issue reports and commits and if the similarity value is over a certain threshold, we
tagged such pairs as linked pairs. The threshold is 0.3 that was decided by our pre-
liminary study.

The input text is:

– Description and comments from an issue report
– Commit message from a commit

A.4 Natural Language Text Similarity with Word Association (WA)

The natural language text similarity approach still has a challenge: wording between
issue reports and commits are different. For example, let us assume we have an issue
with a registration system. Then we might discuss a password system as well; how-
ever, the code fix would be applied to the registration system only. In this case, we
need to make an association between “password” and “registration.” The natural lan-
guage text similarity with word association approach addresses this challenge. The
original paper describes the detail concept [55]. The procedure that we used in this
paper is as follows:

1. Extract the description and all the comments for each issue report and parse them
by lscp (lightweight source code preprocessor) [81].

2. Extract all commit messages for all commits and parse them by lscp.
3. Execute the keyword extraction approach to prepare the training data.
4. Compute the formula (1) to (3) in the original paper [55] for each word pair.
5. If the value of formula (3) is over the threshold, such a word pair is considered as

an associated word pair. The threshold is 0.5 that is decided by our preliminary
study.

A.5 Message Generation from Source Code (GS)

Commit messages are not enough information. Hence a previous study [49] used a
code comment generation technique to add more information. We call this approach
as the message generation from source code approach. Recently, code comment gen-
eration techniques based on deep learning techniques become a popular research area;
and therefore, we can also use such techniques. These techniques use javadoc com-
ments as the supervised data in Java; and therefore, we use the javadoc comments

48



An Empirical Study of Issue-Link Algorithms: Which Issue-Link Algorithms Should We Use? 49

instead of using code comment generation techniques in order to add clean informa-
tion.

The procedure is the same as the natural language text similarity approach. One
difference is that we used the javadoc comments instead of commit messages for each
commit. Such comments were extracted from all modified files on the target commit.

A.6 Loner Heuristics (LO)

Schermann et al. [63] proposed two new scenarios called Loner and Phantom sce-
narios. The Loner scenario indicates the case where only one commit addresses one
issue report; such an issue report links with only one commit. The Phantom scenario
indicates the case where a set of commits addresses an issue report; such an issue re-
port links with multiple commits. The original paper [63] extracted heuristics of such
scenarios respectively in order to improve the accuracy of detecting defect-fixing
commits.

We studied these heuristics as ILAs. Note that we excluded the heuristics about
developers from these heuristics. The procedure of the Loner heuristics is as follows:

1. Execute the keyword extraction approach and remove the links that were detected
by the keyword extraction approach (we call the output as (1)).

2. Apply the time filtering approach to (1) (we call the output as (2)). Since not
only the time filtering approach but also other heuristics are applied, we used 30
minutes as the time interval.

3. If the pairs in (2) meet the following conditions, the pairs remain; otherwise, the
pairs are excluded:

– A pair has one issue report and one commit.
– The issue report in the pair is not reopened.

We considered the remained pairs as the output of the Loner heuristics. Note that
since it is difficult to extract the data whether an issue report is reopened, we skipped
to check whether the issue report is reopened in our implementation.

A.7 Phantom Heuristics (PH)

The procedure of the Phantom heuristics is as follows:

1. Execute the keyword extraction approach and classify commits into linked com-
mits and non-linked commits.

2. Make pairs between linked commits and non-linked commits (we call the output
as (1)).

3. Exclude pairs of (1) if the dates of a linked commit and a non-linked commit are
not within the interval (we call the output as (2)). The interval is five days.

4. Exclude pairs of (2) if the overlap of the modified files is less than DUPLICATE RATE
(the original paper [63] and we use 66% as DUPLICATE RATE).

We considered the remained pairs as the output of the Phantom heuristics.

49



50 Kondo et al.

A.8 Modified Text Files (MT)

Sun et al. [72] stated that we have focused on commit messages; however, we did not
focus on natural language files in the source code repository such as CHANGE.txt.
The modified text files approach regards such files as a representation of a commit.
The algorithm is the same as the natural language text similarity approach. However,
we used different input:

– Description and comments from issue reports
– Natural language texts from commits (i.e., files with .txt or .md extension)

We used a different threshold value for the cosine similarity results. The threshold is
0.2 that was decided by our preliminary study.

A.9 PU Learning (PU)

PU learning (positive and unlabeled learning) is a learning method [23]. We can
build a model based on positive examples and unlabeled examples in this learning
method. Since there might exist many unlabeled (false-negative) links between issue
reports and commits, prior study [71] used the PU learning to predict positive links
based on such unclear data.

The procedure of the PU learning approach as an ILA is as follows:

1. Extract links by the keyword extraction approach.
2. Extract five features (the proportion of modified source files, the number of modi-

fied source files, the time difference, the time difference type, the cosine similarity
of text).

3. Normalize all features except for binary features by z-score [47].
4. Train a PU model.
5. Classify all links by the PU model.

The proportion of modified source files is the proportion of modified Java files in a
commit. The number of modified source files is the number of modified Java files
in a commit. The time difference is the time difference of a commit date and an
issue resolved date in seconds. The time difference type is a binary value; if an issue
resolved date is after a commit date, it would be one; otherwise, it would be zero.
The cosine similarity of text is the cosine similarity values that are computed on the
natural language text similarity approach.

A.10 Machine Learning (ML)

The PU learning approach used a PU model to predict links. However, we can also
apply other machine learning models to this task. We used two machine learning
models: a random forest model [64] and a support vector machine model [66] instead
of a PU model. The procedure is the same as the PU learning approach. The only
difference is to use a PU model or machine learning models. We call this approach as
the machine learning approach.

50


	1 Introduction
	2 Motivating Example
	3 Related Work
	4 Experimental Design
	5 Methodology
	6 Results
	7 Discussion
	8 Threats to Validity
	9 Conclusion
	A Overview of ILAs

