
Challenges and Future Research Direction for Microtask
Programming in Industry

Masanari Kondo
kondo@ait.kyushu-u.ac.jp
Kyushu University, Japan

Shinobu Saito, Yukako Iimura
{shinobu.saitou.cm,yukako.iimura.vr}@hco.ntt.co.jp
NTT Computer and Data Science Laboratories, Japan

Eunjong Choi, Osamu Mizuno
{echoi,o-mizuno}@kit.ac.jp

Kyoto Institute of Technology, Japan

Yasutaka Kamei, Naoyasu Ubayashi
{kamei,ubayashi}@ait.kyushu-u.ac.jp

Kyushu University, Japan

ACM Reference Format:
Masanari Kondo, Shinobu Saito, Yukako Iimura, Eunjong Choi, Osamu
Mizuno, and Yasutaka Kamei, Naoyasu Ubayashi. 2022. Challenges and
Future Research Direction for Microtask Programming in Industry. In 19th
International Conference on Mining Software Repositories (MSR ’22), May
23–24, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3524842.3528511

Microtask programming [4] is a solution to promote distributed de-
velopment in industry. The key idea of microtask programming is to
reduce face-to-face communication across developers by splitting
the development task of software into independent microtasks. Such
microtasks can be completed by crowd workers who work remotely
and at their preferable time such as early morning. Dedicated devel-
opers who have the responsibility for the progress of development
split the task into microtasks, and distribute them to crowd workers.
Hence, microtask programming has these two actors. Our research
team reported that microtask programming has potential benefits
such as the fluidity of project assignments in industrial companies [4].
However, we suppose it still has challenges. In addition, it is still
unclear what are future research direction to support both actors in
microtask programming, though our research team has conducted
three studies for microtask programming so far [2–4].

We found three key challenges that lie ahead to employ microtask
programming in industry by our interview: well-being, encourage-
ment, and responsibility. We interviewed two developers (i. e., crowd
worker and dedicated developer), who had participated in the mi-
crotask programming project in [4], for 1.5 hours to clarify these
challenges and highlight future research direction. Our presentation
will describe our interview, these challenges, and future research
direction. We outline the challenges and the direction as follows.

Challenge 1: Well-being. Microtask programming currently af-
fects actors’ well-being. For example, dedicated developers are under
pressures. Crowd workers ask them all questions and concerns in
microtask programming. An interviewee, who was a dedicated de-
veloper, said if they receive a question from crowd workers, they are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9303-4/22/05. . . $15.00
https://doi.org/10.1145/3524842.3528511

under a pressure to respond to the question quickly. This is because
1) they believed crowd workers wait for quick responses and 2) if
they delayed responding to questions, the progress of development
would be delayed. This pressure is not a serious problem in face-to-
face communication because dedicated developers can observe the
status of crowd workers and easily realize they wait for responses
or leave the desk and go to lunch. Hence, telling the status of crowd
workers to dedicated developers is important to mitigate the pressure
and achieve dedicated developers’ well-being. We believe that the
status should include not only active/inactive but what time they will
start the remaining microtasks again.

Challenge 2: Encouragement. It is also an important challenge
to encourage crowd workers. For example, in remote work, develop-
ers in industry feel that communication takes a lot of time because of
asynchronous communication [1]. Indeed, the interviewees said that
1) crowd workers want dedicated developers to respond quickly, 2)
even the response times in popular remote work situations (i. e., open
source software communities) are insufficient for crowd workers in
industry. Such communication would discourage crowd workers and
have them give up finishing the assigned task. This tendency would
lose the time that crowd workers spared for conducting microtasks
and delay the progress of the development.

Challenge 3: Responsibility. The responsibility in microtask
programming is currently unequally distributed. The important step
in microtask programming is to split the task into microtasks. Each
microtask is independent and can be completed individually. In other
words, crowd workers do not know the overview of the development
and have no responsibility for the progress of development. On
the other hand, dedicated developers have all responsibility for the
development. Indeed, the interviewee (i. e., dedicated developer)
said that they were nervous because of the over-concentration of
responsibility during all times of the project period. Hence, it is
important to distribute not only microtasks but the responsibility.

Future Research Direction. These challenges are important in
industrial companies for developers’ mental. We believe that re-
searchers in the MSR community can address them. For example,
we envision researchers can address the first challenge by implement-
ing a bot that is an intermediate between two actors. Specifically, the
bot delivers the appropriate number of questions at the appropriate
time to dedicated developers depending on when crowd workers
need the response. Also, the bot can be used to show the status of the
crowd workers. For example, crowd workers go to lunch and come
back in 1 hour or come back soon.

https://doi.org/10.1145/3524842.3528511
https://doi.org/10.1145/3524842.3528511

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Kondo, et al.

REFERENCES
[1] Denae Ford, Margaret-Anne Storey, Thomas Zimmermann, Christian Bird, Sonia

Jaffe, Chandra Maddila, Jenna L. Butler, Brian Houck, and Nachiappan Nagappan.
[n.d.]. A Tale of Two Cities: Software Developers Working from Home during
the COVID-19 Pandemic. ACM Trans. Softw. Eng. Methodol., Article 27 ([n. d.]),
37 pages. accepted, to appear.

[2] Shinobu Saito and Yukako Iimura. 2020. Hybrid Sourcing: Novel Combination of
Crowdsourcing and Inner-Sourcing for Software Developments. In Proceedings of
the 15th International Conference on Global Software Engineering (ICGSE). ACM,

81–85.
[3] Shinobu Saito and Yukako Iimura. 2021. Toward Understanding of Employee

Motivation for Software InnerSourcing : Industrial Experience Report. In Proceed-
ings of the 2021 IEEE/ACM Joint 15th International Conference on Software and
System Processes (ICSSP) and 16th ACM/IEEE International Conference on Global
Software Engineering (ICGSE). IEEE/ACM, 33–38.

[4] Shinobu Saito, Yukako Iimura, Emad Aghayi, and Thomas D. LaToza. 2020. Can
Microtask Programming Work in Industry?. In Proceedings of the ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). ACM, 1263–1273.

	References

