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ABSTRACT

Issue reports are a pivotal interface between developers and users for
receiving information about bugs in their products. In practice, issue
reports often have incorrect information or insufficient information
to enable bugs to be reproduced, and this has the effect of delaying
the entire bug-fixing process. To facilitate their bug-reproduction
work, GitHub has provided a new feature that allows users to share
videos (e.g., mp4 files.) Using such videos, reports can be made to
developers about the details of bugs by recording the symptoms,
reproduction steps, and other important aspects of bug information.

While such visual issue reports have the potential to significantly
improve the bug-fixing process, no studies have empirically exam-
ined this impact. In this paper, we conduct a preliminary study to
identify the characteristics of visual issue reports by comparing them
with non-visual issue reports.

We collect 1,230 videos and 18,760 images from 226,286 issues
on 4,173 publicly available repositories. Our preliminary analysis
shows that issue reports with images are described in fewer words
than non-visual issue reports. In addition, we observe that most dis-
cussions in visual issue reports are concerned with either conditions
for reproduction (e.g., when) or GUI (e.g., pageviewcontroller.)
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1 INTRODUCTION

The question “What makes a good issue report?” has been studied for
decades and is still the ultimate research question for many studies
aiming to improve the quality of issue reports [21][39][4]. Issue
reports (a.k.a. bug reports) often lack the information necessary for
developers to reproduce bugs [23][17]. For example, Zimmermann et
al. [39] report that stack traces and steps for reproducing a bug are
considered to be helpful by developers. But, it is difficult for users
to provide this information, and it is often missing or incorrect. This
mismatch between what developers need and what reporters can
provide can often delay the fixing of bugs [23]. In addition, many
studies have reported that the quality of issue reports impacts both the
issue resolution time [7][18] and the issue resolution rate [40][38].

To facilitate developers’ bug-reproduction work, GitHub launched
a new feature that allows users to share videos (e.g., mp4 files) in
May 2021 [9]. Using such videos, reports can be made to developers
about the details of bugs by recording the symptoms, reproduction
steps, and other important aspects of a comprehensive bug report.
These visual images can help developers understand the nature of
the bug, and what users were doing when the bug occurred. While
such visual issue reports have the potential to improve the bug-fixing
process, no studies have empirically examined this impact.

In this paper, we conduct a preliminary study to identify the
characteristics of visual issue reports by comparing them with non-
visual issue reports. In addition, we provide the dataset used in
this study on a public repositoryl, to promote future studies using
visual issue reports. This dataset consists of videos and images in
publicly available repositories on GitHub. Specifically, we collected
1,230 videos and 18,760 images from 226,286 issue reports on 4,173
publicly available repositories.

Our initial analysis reveals that (i) issue reports with images
contain fewer words than non-visual issue reports; (ii) the number
of comments and the first response time for visual issue reports are
almost the same as for non-visual issue reports; and (iii) resolution
time of visual issue reports is not significantly different from that of
other issue reports.

2 STUDY DESIGN
2.1 Research Questions

To identify the characteristics of the visual issue reports, we ad-
dressed the following three research questions: focusing on Report
(RQ1), Discussion (RQ2), and Fix (RQ3).
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RQI: Do visual issue reports require less texts to report bugs
than non-visual issue reports?
Developers often find it difficult to reproduce bugs using
the reported information [11][31][39]. On the other hand,
as reporters are not always developers, it is not easy to tell
what they did and what they encountered [10]. Thus, GitHub
developed a feature that can easily provide information with
videos and officially announced the feature release on May,
2021 [9]. Potter and Faulconer [30] showed that, in general,
visual images are a more effective approach for describing
what people want to communicate compared with text. We
hypothesize that videos or images can reduce the effort for
reporting bugs. In this RQ, we measure the number of words
in the description of issues as a proxy measure for the effort.

RQ2: Do visual issue reports lead to active discussions more
than non-visual issue reports?
Joorabchi et al. [23] showed that lack of proper communica-
tion between reporters and developers often ends up with re-
ports in which the reported bugs are not able to be reproduced.
In addition, many studies claim that comments made to a bug
contribute to improving bug-fixing activities [16][29][36].
Visual issue reports might have the potential to attract devel-
opers and receive many comments from the developers. In
this RQ, we examine the number of comments in the closed
issues and the days to receive the first comment.

RQ3: Do visual issue reports get resolved faster than non-visual
issue reports?
Zimmermann et al. [39] reported that issue reports occasion-
ally have missing or incorrect steps to reproduce bugs, which
delays the entire bug-fixing process [9]. Also, Ohira et al. [27]
showed that bug-fixing activities are delayed when the re-
porter and developer are different persons, because this situa-
tion requires communication between the two. Visual issues
may mitigate this issue by facilitating their communication. In
this RQ, we measure the time from reported to closed to eval-
uate how quickly visual issue reports are resolved, compared
with issues without videos or images.

2.2 Context Selection

To select projects as context for our study, we employed GitHub
Search [14]. GitHub Search can find repositories satisfying specific
criteria. To filter out unpopular, inactive repositories, or repositories
that have no issues, we set up the following criteria.

e the number of stars > 10
o the number of issue reports > 1
e at least one commit was made in 2021

Consequently, the number of the repositories satisfying the criteria
was 289,115. From November 2021 to December 2021, we collected
770,655 closed issue reports from 4,173 projects that were randomly
selected. We collected all the closed issue reports from as many
projects as possible in the limited time.
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Table 1: Numbers of issue reports for each category

#issues

Img  issue reports containing image(s) 18,760 (9.09%)
Vid issue reports containing video(s) 1,230 (0.54%)
None issue reports containing no videos/images 206,415 (91.22%)

Description

2.3 Data Collection

We first collected closed issue reports with the method get_issue
provided by PyGi tHub? that internally execute GitHub API v3.3 In
total, we collected 770,655 closed issue reports.

Next, we collected videos and images attached to the issue reports.
While GitHub users can see videos and images on issue pages, the
videos and images are stored in different URLs. As the URLs are
written in the text description of issue reports, we parsed them with
regular expressions and downloaded them. The regular expressions
we used are shown as follows:

https:/luser-images.githubusercontent.com/[a-zA-Z0-9\/]+\ [a-zA-Z0-9 ]+

Each downloaded file was determined by its extension to be an
image, a video, or neither of these. We used only images and videos.
Specifically, “png”, “PNG”, “jpg”, “JPG”, and “jpeg” are treated
as images, and “gif”’, “GIF”, “mp4”, “MP4”, and “mov” as videos.
Consequently, we downloaded 34,553 images and 3,914 videos with
the collected URLs.

Then, we filtered out inappropriate issue reports for our analysis.
As the method get_issue collects not only issue reports but also
pull requests, we excluded pull requests from the original dataset
(294,514 issues). In addition, unlike Bugzilla [28] or Jira [1], GitHub
issues do not have resolution statuses (e.g., “FIXED”, “DUPLI-
CATED?”). Instead, GitHub provides default tags to indicate these
resolution statuses. We excluded 42,496 issues with tags indicat-
ing invalid issues (i.e., “duplicated”, “invalid”) or tags indicating
non-bug (i.e., “document”, “question”, "enhancement"). Also, we
removed 25,732 issue reports resolved in too short (< 30 seconds)
or long periods (> one year) because developers leave bugs for long
years without addressing or they report issues after bug-fix.
Dataset summary. The final dataset contains 226,286 issue reports,
18,760 images, and 1,230 videos. These issue reports are classified
into three categories based on whether they have either image(s)
or video(s). Table 1 shows the number of issue reports for each
category. Note that issue reports often have both images and videos.
These issue reports are counted in both /mg and Vid categories (only
around 0.05%). Thus, the total number of downloaded issue reports
(i.e., 226,286) is different from the sum of issues (i.e., 226,405). In
this paper, we refer to the issue reports in the Img and Vid categories
as visual issue reports.

In average, issue reports categorized in Vid have 1.1 videos and
issue reports in /mg have 1.5 images. Out of the collected issues,
only 9.09% of issue reports have images, and 0.54% have videos.
While this number seems to be small, looking into the trend shown
in Figure 1, the rate of visual issue reports by year is increasing
from 2017 to 2021. The ratio of visual issue reports reached to
13% between 2017 and 2021. Also, we found that GitHub officially

2ht[ps://pygithub.readlhedocs.io/en/lates[/index.hlml
3https://docs.github.com/en/rest
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Figure 1: Percentage of issue reports for each category by year.

Table 2: Attributes we collected from the issue reports

Dimension Attributes Description

Report Images Number of images in the description
Videos Number of videos in the description
DescriptionLength ~ Number of words in the description

Discussion  Comments Number of comments in the report
FirstCommentTime Days until the first comment is made

Days to resolve the issue

Fix ResolutionT ime

launched the feature to share videos in May 2021 but developers
often had uploaded videos before the beta release of the feature [8].
When we manually looked into issue reports, GitHub had allowed
users to attach GIF files on the descriptions.

2.4 Analysis

Attributes. We retrieved attributes from the collected issue reports.
Table 2 shows six attributes used in this study, which are classified
into three dimensions, “Report”, “Discussion”, and “Fix”.

The attributes in the dimension “Report” are extracted from the
description of issue reports or attached files when the issue was
created. In particular, in RQ1, we count the number of words in
reports (i.e., DescriptionLength) for Img, Vid, and None. In addi-
tion, Images and Videos are used to compare the average number
of the files attached in reports. Note that these attributes are not
calculated from either title, not comments (i.e., only descriptions
were used). Also, URLSs in the descriptions to attach images/videos
are not counted as words in DescriptionLength.

The dimension “Discussion” has two attributes, Comments and
FirstCommentTime. Comments is the number of comments that
were made to an issue report. We utilize this attribute as a proxy
measure of discussion effort. FirstCommentTime is the time dif-
ference in days between when the first comment was made and
when the issue was reported. We use this attribute for measuring
developers’ interest.

The dimension “Fix” has ResolutionT ime which is the time dif-
ference in days between when the issue was closed and when the
issue was reported.

Method. For each research question, we measure the median values
of the attributes to compare Img, Vid and None. Also we apply a
non-parametric test Steel-Dwass test [34] to evaluate the difference.
Steel-Dwass test performs the multiple comparisons while taking
into account the number of comparisons to prevent increases in the
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family-wise error rate. The datasets do not follow normal distribu-
tions, and do not satisfy homoscedasticity, and therefore are good
candidates for analysis using the Steel-Dwass test.

3 RESULTS

RQ1: Do visual issue reports require less texts to
report bugs than non-visual issue reports?

Figure 2 shows the distributions in the number of words written
in descriptions of issue reports. The median of DescriptionLength
was 42.0 words in Img, 54.5 in Vid, and 60.0 in None. Compared
with Vid and None, the number of words in Vid is slightly smaller
than that of the non-visual ones. However, no statistically significant
differences are observed between them (p > 0.01). This implies that
reporters write as many texts to describe the contents of videos as
text-only reports.

Shedding light on /mg, the number of words in Img is smaller
(42 words) than that in None (60 words) with a statistical significant
difference (p < 0.01). Compared with Vid, the median in Img is
smaller than that in Vid (55 words). However, there is no statistically
significant difference between Img and Vid.

RQ1: Issue reports with images contain fewer words than
non-visual issues, but still issue reports with videos require
the same amount of words as non-visual issue reports.

RQ2: Do visual issue reports lead to active
discussions more than non-visual issue reports?

Figure 3 shows the distributions of the number of comments and the
days to receive the first comments. We observed that the interquartile
range (i.e., the box) of FirstCommentTime in the Vid category are
the largest, whereas that of the issue reports in the Img category are
the shortest. However, the median in the three categories are similar
and no significant differences are observed (/mg: 0.24 days, Vid:
0.40 days, None: 0.32).

Also, in terms of Comments, the median and the interquartile
range are almost same across the three categories, and no significant
differences are observed.

RQ2: Visual issue reports do not lead to active discussions
in terms of the number of words and the first response time.

RQ3: Do visual issue reports get resolved faster than
non-visual issue reports?

Figure 4 shows the distribution of days between when the issue report
was created and when the issue report was closed. The median of
non-visual issues are larger (5.96 days) than that of Img (4.78 days)
and Vid (5.70 days). Also, the interquartile range of /mg is smaller
than the others. However, no statistically significant differences
between any pairs are observed.

RQ3: The median of resolution time in non-visual issue
reports are larger than that in visual issue reports but no
statistically significant differences are observed.
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Figure 2: Distribution of
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Table 3: Top-10 words in terms of TFIDF

Img Vid None
1 image packages file
2 error view error
3 | screenshot when lib
4 when python if
5 have pageviewcontroller line
6 if config java
7 version local get
8 get version have
9 using problem when

10 file error version

4 DISCUSSION

4.1 Are Visual Issue Reports and Non-Visual Issue
Reports Used for Similar Aims?

In this study, we observed that developers write fewer words in issue
reports with images (/mg) compared to non-visual issue reports
(None). On the other hands, between None and Vid, no statistically
significant difference is observed (RQ1). Also, we confirmed that
there are no statistical significant differences of the resolution time
between visual issue reports (i.e., Img and Vid) and None (RQ3).
These findings rejected our hypothesis. To better understand the
characteristics of visual/non-visual issue reports, we examine the
differences in the contents of bugs in this section.

We extracted words from the descriptions of closed issue reports
in the dataset, and removed stop words such as “at”, “it”, and “the”
from them. Then, we calculated TF-IDF values [32] to clarify the
characteristic words for each types of issues (i.e., Vid, Img, None).

Table 3 shows the top-10 characteristic words in each category,
calculated by TF-IDF. First, in the Vid and Img categories, we
observed several words related to GUI, which is close to visual, such
as “screenshot” and “pageviewcontroller”. On the other hand, “line’
and “java” related to source codes are located at the top of None.
Second, it is worth noting that “when” is shown in all categories but it
is located in the top-5 ranks of the lists in Vid and Img. This implies
that visual issue reports are utilized to describe conditions/steps
to reproduce bugs. In particular, as “config” is shown only in Vid,
videos may be used to explain complicated conditions/environment
to reproduce bugs. This study does not measure the degree of the
difficulties in reproducing bugs but future work should investigate it.

s

Figure 3: Distribution of days to receive the first comments
and the number of comments (“Discussion” dimension)

Figure 4: Distribution of reso-
lution time (“Fix” dimension)

4.2 Future Research Direction

This section discusses what should be considered by future studies.
Fine-grained analysis. In RQ2, we showed that issue reports in
Vid take longer times to receive the first comment than issue reports
in Img. As these might be caused by that issue reports with images
attract more developers or that issue reports with videos are more dif-
ficult problems. Future studies should examine how many developers
are involved [2], severity tags [37], and size of changes [19].

In this study, we studied only closed bugs and examined only

resolution time in RQ3 (Fix). However, previous studies examined
several statuses of bugs. For example, Joorabchi et al. [23] studied
“Works For Me”, Shihab et al. [33] studied reopen bugs, and Zou et
al. [40] examined bug fixing rate (e.g., “Won’t fix”’). However, most
of the studies use other bug tracking systems, Bugzilla [28] or Jira [1].
These bug tracking systems have various resolution statuses such as
“Won’t Fix” and “Works For Me” in default but GitHub we studied
does not. Future studies should collect more issues and show the
percentage of each status, etc.
Bug reproduction Automation. Developers often find it difficult
to reproduce bugs using the reported information [11][31][39]. Au-
tomating this process would support developers to quickly find and
fix the cause of bugs. Our final goal of this study is to automate bug
reproduction. We believe that we can make use of image process-
ing technique [3][20][25], using the uploaded videos, in order to
identify which pages/screens of systems were used and what actions
were done by users (e.g., which button was clicked). This approach
would reduce efforts for evaluating if reported issues can be enough
reproducible.

S RELATED WORK

While numerous studies have worked on bug resolution time [12][15][22]

[24][35], in particular, the following studies investigated the rela-
tionship between bug resolution time and various elements of bug
reports other than videos [5][6][26]. Noyori et al. [26] investigated
the relationship between resolution time and topics included in the
comments of issue reports. They found that bugs are resolved fast
when discussions about symptoms are not needed. Bhattacharya et
al. [5] developed bug-fix time prediction models using various met-
rics. They showed that bug severity and the number of attachments
(patches) do not correlate with bug-fix time. In addition, their later
work by Bhattacharya et al. [6] compared bug-fix time for high-
quality and poor-quality reports. They observed that the text length
of descriptions is relatively correlated with bug resolution time.
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A few recent studies have utilized visual issue reports for improv-
ing bug-fixing process [13]. Cooper et al. [13] used videos and texts
included in issue reports to detect duplicate ones. Compared with the
study, the contribution of our work is (1) the analysis of the impact
of visual issue reports and (2) the public available datasets including
1,230 videos and 18,760 images from 226,286 issue reports.

6

CONCLUSION

In this paper, we conducted a preliminary study to reveal whether
visual issue reports help developers or not. Our study demonstrated
that issue reports with images are described in fewer words and do
not affect their resolution times.
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