Do Visual Issue Reports Help Developers Fix Bugs?
— A Preliminary Study of Using Videos and Images to Report Issues on GitHub —

Hiroki Kuramoto, Masanari Kondo, Yutaro Kashiwa, Yuta Ishimoto, Kaze Shindo, Yasutaka Kamei,

Naoyasu Ubayashi
Principles of Software engineering and programming Languages Lab. (POSL), Kyushu University

Japan

{kuramoto,ishimoto,shindo } @posl.ait.kyushu-u.ac.jp, { kondo,kashiwa,kamei,ubayashi } @ait.kyushu-u.ac.jp

ABSTRACT

Issue reports are a pivotal interface between developers and users for
receiving information about bugs in their products. In practice, issue
reports often have incorrect information or insufficient information
to enable bugs to be reproduced, and this has the effect of delaying
the entire bug-fixing process. To facilitate their bug-reproduction
work, GitHub has provided a new feature that allows users to share
videos (e.g., mp4 files.) Using such videos, reports can be made to
developers about the details of bugs by recording the symptoms,
reproduction steps, and other important aspects of bug information.

While such visual issue reports have the potential to significantly
improve the bug-fixing process, no studies have empirically exam-
ined this impact. In this paper, we conduct a preliminary study to
identify the characteristics of visual issue reports by comparing them
with non-visual issue reports.

We collect 1,230 videos and 18,760 images from 226,286 issues
on 4,173 publicly available repositories. Our preliminary analysis
shows that issue reports with images are described in fewer words
than non-visual issue reports. In addition, we observe that most dis-
cussions in visual issue reports are concerned with either conditions
for reproduction (e.g., when) or GUI (e.g., pageviewcontroller.)

CCS CONCEPTS

o Software and its engineering — Maintaining software.

KEYWORDS

GitHub, Issues, Videos, Images

ACM Reference Format:

Hiroki Kuramoto, Masanari Kondo, Yutaro Kashiwa, Yuta Ishimoto, Kaze
Shindo, Yasutaka Kamei, Naoyasu Ubayashi. 2022. Do Visual Issue Re-
ports Help Developers Fix Bugs?: — A Preliminary Study of Using Videos
and Images to Report Issues on GitHub —. In Proceedings of ICPC °22:
Proceedings of the 30th IEEE/ACM International Conference on Program
Comprehension (ICPC 2022). ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

ICPC 2022, May 16-17, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-X/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The question “What makes a good issue report?” has been studied for
decades and is still the ultimate research question for many studies
aiming to improve the quality of issue reports [21][39][4]. Issue
reports (a.k.a. bug reports) often lack the information necessary for
developers to reproduce bugs [23][17]. For example, Zimmermann et
al. [39] report that stack traces and steps for reproducing a bug are
considered to be helpful by developers. But, it is difficult for users
to provide this information, and it is often missing or incorrect. This
mismatch between what developers need and what reporters can
provide can often delay the fixing of bugs [23]. In addition, many
studies have reported that the quality of issue reports impacts both the
issue resolution time [7][18] and the issue resolution rate [40][38].

To facilitate developers’ bug-reproduction work, GitHub launched
a new feature that allows users to share videos (e.g., mp4 files) in
May 2021 [9]. Using such videos, reports can be made to developers
about the details of bugs by recording the symptoms, reproduction
steps, and other important aspects of a comprehensive bug report.
These visual images can help developers understand the nature of
the bug, and what users were doing when the bug occurred. While
such visual issue reports have the potential to improve the bug-fixing
process, no studies have empirically examined this impact.

In this paper, we conduct a preliminary study to identify the
characteristics of visual issue reports by comparing them with non-
visual issue reports. In addition, we provide the dataset used in
this study on a public repositoryl, to promote future studies using
visual issue reports. This dataset consists of videos and images in
publicly available repositories on GitHub. Specifically, we collected
1,230 videos and 18,760 images from 226,286 issue reports on 4,173
publicly available repositories.

Our initial analysis reveals that (i) issue reports with images
contain fewer words than non-visual issue reports; (ii) the number
of comments and the first response time for visual issue reports are
almost the same as for non-visual issue reports; and (iii) resolution
time of visual issue reports is not significantly different from that of
other issue reports.

2 STUDY DESIGN
2.1 Research Questions

To identify the characteristics of the visual issue reports, we ad-
dressed the following three research questions: focusing on Report
(RQ1), Discussion (RQ2), and Fix (RQ3).

! https://doi.org/10.5281/zenodo.6071588


https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.5281/zenodo.6071588

ICPC 2022, May 16-17, 2022, Pittsburgh, PA, USA

RQI: Do visual issue reports require less texts to report bugs
than non-visual issue reports?
Developers often find it difficult to reproduce bugs using
the reported information [11][31][39]. On the other hand,
as reporters are not always developers, it is not easy to tell
what they did and what they encountered [10]. Thus, GitHub
developed a feature that can easily provide information with
videos and officially announced the feature release on May,
2021 [9]. Potter and Faulconer [30] showed that, in general,
visual images are a more effective approach for describing
what people want to communicate compared with text. We
hypothesize that videos or images can reduce the effort for
reporting bugs. In this RQ, we measure the number of words
in the description of issues as a proxy measure for the effort.

RQ2: Do visual issue reports lead to active discussions more
than non-visual issue reports?
Joorabchi et al. [23] showed that lack of proper communica-
tion between reporters and developers often ends up with re-
ports in which the reported bugs are not able to be reproduced.
In addition, many studies claim that comments made to a bug
contribute to improving bug-fixing activities [16][29][36].
Visual issue reports might have the potential to attract devel-
opers and receive many comments from the developers. In
this RQ, we examine the number of comments in the closed
issues and the days to receive the first comment.

RQ3: Do visual issue reports get resolved faster than non-visual
issue reports?
Zimmermann et al. [39] reported that issue reports occasion-
ally have missing or incorrect steps to reproduce bugs, which
delays the entire bug-fixing process [9]. Also, Ohira et al. [27]
showed that bug-fixing activities are delayed when the re-
porter and developer are different persons, because this situa-
tion requires communication between the two. Visual issues
may mitigate this issue by facilitating their communication. In
this RQ, we measure the time from reported to closed to eval-
uate how quickly visual issue reports are resolved, compared
with issues without videos or images.

2.2 Context Selection

To select projects as context for our study, we employed GitHub
Search [14]. GitHub Search can find repositories satisfying specific
criteria. To filter out unpopular, inactive repositories, or repositories
that have no issues, we set up the following criteria.

e the number of stars > 10
o the number of issue reports > 1
e at least one commit was made in 2021

Consequently, the number of the repositories satisfying the criteria
was 289,115. From November 2021 to December 2021, we collected
770,655 closed issue reports from 4,173 projects that were randomly
selected. We collected all the closed issue reports from as many
projects as possible in the limited time.

Hiroki Kuramoto, Masanari Kondo, Yutaro Kashiwa, Yuta Ishimoto, Kaze Shindo, Yasutaka Kamei, Naoyasu Ubayashi

Table 1: Numbers of issue reports for each category

#issues

Img  issue reports containing image(s) 18,760 (9.09%)
Vid issue reports containing video(s) 1,230 (0.54%)
None issue reports containing no videos/images 206,415 (91.22%)

Description

2.3 Data Collection

We first collected closed issue reports with the method get_issue
provided by PyGi tHub? that internally execute GitHub API v3.3 In
total, we collected 770,655 closed issue reports.

Next, we collected videos and images attached to the issue reports.
While GitHub users can see videos and images on issue pages, the
videos and images are stored in different URLs. As the URLs are
written in the text description of issue reports, we parsed them with
regular expressions and downloaded them. The regular expressions
we used are shown as follows:

https:/luser-images.githubusercontent.com/[a-zA-Z0-9\/]+\ [a-zA-Z0-9 ]+

Each downloaded file was determined by its extension to be an
image, a video, or neither of these. We used only images and videos.
Specifically, “png”, “PNG”, “jpg”, “JPG”, and “jpeg” are treated
as images, and “gif”’, “GIF”, “mp4”, “MP4”, and “mov” as videos.
Consequently, we downloaded 34,553 images and 3,914 videos with
the collected URLs.

Then, we filtered out inappropriate issue reports for our analysis.
As the method get_issue collects not only issue reports but also
pull requests, we excluded pull requests from the original dataset
(294,514 issues). In addition, unlike Bugzilla [28] or Jira [1], GitHub
issues do not have resolution statuses (e.g., “FIXED”, “DUPLI-
CATED?”). Instead, GitHub provides default tags to indicate these
resolution statuses. We excluded 42,496 issues with tags indicat-
ing invalid issues (i.e., “duplicated”, “invalid”) or tags indicating
non-bug (i.e., “document”, “question”, "enhancement"). Also, we
removed 25,732 issue reports resolved in too short (< 30 seconds)
or long periods (> one year) because developers leave bugs for long
years without addressing or they report issues after bug-fix.
Dataset summary. The final dataset contains 226,286 issue reports,
18,760 images, and 1,230 videos. These issue reports are classified
into three categories based on whether they have either image(s)
or video(s). Table 1 shows the number of issue reports for each
category. Note that issue reports often have both images and videos.
These issue reports are counted in both /mg and Vid categories (only
around 0.05%). Thus, the total number of downloaded issue reports
(i.e., 226,286) is different from the sum of issues (i.e., 226,405). In
this paper, we refer to the issue reports in the Img and Vid categories
as visual issue reports.

In average, issue reports categorized in Vid have 1.1 videos and
issue reports in /mg have 1.5 images. Out of the collected issues,
only 9.09% of issue reports have images, and 0.54% have videos.
While this number seems to be small, looking into the trend shown
in Figure 1, the rate of visual issue reports by year is increasing
from 2017 to 2021. The ratio of visual issue reports reached to
13% between 2017 and 2021. Also, we found that GitHub officially

2ht[ps://pygithub.readlhedocs.io/en/lates[/index.hlml
3https://docs.github.com/en/rest


https://pygithub.readthedocs.io/en/latest/index.html
https://docs.github.com/en/rest

Do Visual Issue Reports Help Developers Fix Bugs?

IssueCreatedYear[%]

B Img
wz \id

124

T<2015 2016 2017 2018 2019 2020 2021

Figure 1: Percentage of issue reports for each category by year.

Table 2: Attributes we collected from the issue reports

Dimension Attributes Description

Report Images Number of images in the description
Videos Number of videos in the description
DescriptionLength ~ Number of words in the description

Discussion  Comments Number of comments in the report
FirstCommentTime Days until the first comment is made

Days to resolve the issue

Fix ResolutionT ime

launched the feature to share videos in May 2021 but developers
often had uploaded videos before the beta release of the feature [8].
When we manually looked into issue reports, GitHub had allowed
users to attach GIF files on the descriptions.

2.4 Analysis

Attributes. We retrieved attributes from the collected issue reports.
Table 2 shows six attributes used in this study, which are classified
into three dimensions, “Report”, “Discussion”, and “Fix”.

The attributes in the dimension “Report” are extracted from the
description of issue reports or attached files when the issue was
created. In particular, in RQ1, we count the number of words in
reports (i.e., DescriptionLength) for Img, Vid, and None. In addi-
tion, Images and Videos are used to compare the average number
of the files attached in reports. Note that these attributes are not
calculated from either title, not comments (i.e., only descriptions
were used). Also, URLSs in the descriptions to attach images/videos
are not counted as words in DescriptionLength.

The dimension “Discussion” has two attributes, Comments and
FirstCommentTime. Comments is the number of comments that
were made to an issue report. We utilize this attribute as a proxy
measure of discussion effort. FirstCommentTime is the time dif-
ference in days between when the first comment was made and
when the issue was reported. We use this attribute for measuring
developers’ interest.

The dimension “Fix” has ResolutionT ime which is the time dif-
ference in days between when the issue was closed and when the
issue was reported.

Method. For each research question, we measure the median values
of the attributes to compare Img, Vid and None. Also we apply a
non-parametric test Steel-Dwass test [34] to evaluate the difference.
Steel-Dwass test performs the multiple comparisons while taking
into account the number of comparisons to prevent increases in the

ICPC 2022, May 16-17, 2022, Pittsburgh, PA, USA

family-wise error rate. The datasets do not follow normal distribu-
tions, and do not satisfy homoscedasticity, and therefore are good
candidates for analysis using the Steel-Dwass test.

3 RESULTS

RQ1: Do visual issue reports require less texts to
report bugs than non-visual issue reports?

Figure 2 shows the distributions in the number of words written
in descriptions of issue reports. The median of DescriptionLength
was 42.0 words in Img, 54.5 in Vid, and 60.0 in None. Compared
with Vid and None, the number of words in Vid is slightly smaller
than that of the non-visual ones. However, no statistically significant
differences are observed between them (p > 0.01). This implies that
reporters write as many texts to describe the contents of videos as
text-only reports.

Shedding light on /mg, the number of words in Img is smaller
(42 words) than that in None (60 words) with a statistical significant
difference (p < 0.01). Compared with Vid, the median in Img is
smaller than that in Vid (55 words). However, there is no statistically
significant difference between Img and Vid.

RQ1: Issue reports with images contain fewer words than
non-visual issues, but still issue reports with videos require
the same amount of words as non-visual issue reports.

RQ2: Do visual issue reports lead to active
discussions more than non-visual issue reports?

Figure 3 shows the distributions of the number of comments and the
days to receive the first comments. We observed that the interquartile
range (i.e., the box) of FirstCommentTime in the Vid category are
the largest, whereas that of the issue reports in the Img category are
the shortest. However, the median in the three categories are similar
and no significant differences are observed (/mg: 0.24 days, Vid:
0.40 days, None: 0.32).

Also, in terms of Comments, the median and the interquartile
range are almost same across the three categories, and no significant
differences are observed.

RQ2: Visual issue reports do not lead to active discussions
in terms of the number of words and the first response time.

RQ3: Do visual issue reports get resolved faster than
non-visual issue reports?

Figure 4 shows the distribution of days between when the issue report
was created and when the issue report was closed. The median of
non-visual issues are larger (5.96 days) than that of Img (4.78 days)
and Vid (5.70 days). Also, the interquartile range of /mg is smaller
than the others. However, no statistically significant differences
between any pairs are observed.

RQ3: The median of resolution time in non-visual issue
reports are larger than that in visual issue reports but no
statistically significant differences are observed.




ICPC 2022, May 16-17, 2022, Pittsburgh, PA, USA

Hiroki Kuramoto, Masanari Kondo, Yutaro Kashiwa, Yuta Ishimoto, Kaze Shindo, Yasutaka Kamei, Naoyasu Ubayashi

DescriptionLength FirstCommentTime[days] Comments ResolutionTime[days]
300 - n 100+
8
- 6 -
200 6 75
4 4 50
100
24 2 25
01 T T T 0 T T T 0 T T T 0 T T T
Img None Vid Img None Vid Img None Vid Img None Vid

Figure 2: Distribution of
# words (‘“Report” dimension)

Table 3: Top-10 words in terms of TFIDF

Img Vid None
1 image packages file
2 error view error
3 | screenshot when lib
4 when python if
5 have pageviewcontroller line
6 if config java
7 version local get
8 get version have
9 using problem when

10 file error version

4 DISCUSSION

4.1 Are Visual Issue Reports and Non-Visual Issue
Reports Used for Similar Aims?

In this study, we observed that developers write fewer words in issue
reports with images (/mg) compared to non-visual issue reports
(None). On the other hands, between None and Vid, no statistically
significant difference is observed (RQ1). Also, we confirmed that
there are no statistical significant differences of the resolution time
between visual issue reports (i.e., Img and Vid) and None (RQ3).
These findings rejected our hypothesis. To better understand the
characteristics of visual/non-visual issue reports, we examine the
differences in the contents of bugs in this section.

We extracted words from the descriptions of closed issue reports
in the dataset, and removed stop words such as “at”, “it”, and “the”
from them. Then, we calculated TF-IDF values [32] to clarify the
characteristic words for each types of issues (i.e., Vid, Img, None).

Table 3 shows the top-10 characteristic words in each category,
calculated by TF-IDF. First, in the Vid and Img categories, we
observed several words related to GUI, which is close to visual, such
as “screenshot” and “pageviewcontroller”. On the other hand, “line’
and “java” related to source codes are located at the top of None.
Second, it is worth noting that “when” is shown in all categories but it
is located in the top-5 ranks of the lists in Vid and Img. This implies
that visual issue reports are utilized to describe conditions/steps
to reproduce bugs. In particular, as “config” is shown only in Vid,
videos may be used to explain complicated conditions/environment
to reproduce bugs. This study does not measure the degree of the
difficulties in reproducing bugs but future work should investigate it.

s

Figure 3: Distribution of days to receive the first comments
and the number of comments (“Discussion” dimension)

Figure 4: Distribution of reso-
lution time (“Fix” dimension)

4.2 Future Research Direction

This section discusses what should be considered by future studies.
Fine-grained analysis. In RQ2, we showed that issue reports in
Vid take longer times to receive the first comment than issue reports
in Img. As these might be caused by that issue reports with images
attract more developers or that issue reports with videos are more dif-
ficult problems. Future studies should examine how many developers
are involved [2], severity tags [37], and size of changes [19].

In this study, we studied only closed bugs and examined only

resolution time in RQ3 (Fix). However, previous studies examined
several statuses of bugs. For example, Joorabchi et al. [23] studied
“Works For Me”, Shihab et al. [33] studied reopen bugs, and Zou et
al. [40] examined bug fixing rate (e.g., “Won’t fix”’). However, most
of the studies use other bug tracking systems, Bugzilla [28] or Jira [1].
These bug tracking systems have various resolution statuses such as
“Won’t Fix” and “Works For Me” in default but GitHub we studied
does not. Future studies should collect more issues and show the
percentage of each status, etc.
Bug reproduction Automation. Developers often find it difficult
to reproduce bugs using the reported information [11][31][39]. Au-
tomating this process would support developers to quickly find and
fix the cause of bugs. Our final goal of this study is to automate bug
reproduction. We believe that we can make use of image process-
ing technique [3][20][25], using the uploaded videos, in order to
identify which pages/screens of systems were used and what actions
were done by users (e.g., which button was clicked). This approach
would reduce efforts for evaluating if reported issues can be enough
reproducible.

S RELATED WORK

While numerous studies have worked on bug resolution time [12][15][22]

[24][35], in particular, the following studies investigated the rela-
tionship between bug resolution time and various elements of bug
reports other than videos [5][6][26]. Noyori et al. [26] investigated
the relationship between resolution time and topics included in the
comments of issue reports. They found that bugs are resolved fast
when discussions about symptoms are not needed. Bhattacharya et
al. [5] developed bug-fix time prediction models using various met-
rics. They showed that bug severity and the number of attachments
(patches) do not correlate with bug-fix time. In addition, their later
work by Bhattacharya et al. [6] compared bug-fix time for high-
quality and poor-quality reports. They observed that the text length
of descriptions is relatively correlated with bug resolution time.



Do Visual Issue Reports Help Developers Fix Bugs?

A few recent studies have utilized visual issue reports for improv-
ing bug-fixing process [13]. Cooper et al. [13] used videos and texts
included in issue reports to detect duplicate ones. Compared with the
study, the contribution of our work is (1) the analysis of the impact
of visual issue reports and (2) the public available datasets including
1,230 videos and 18,760 images from 226,286 issue reports.

6

CONCLUSION

In this paper, we conducted a preliminary study to reveal whether
visual issue reports help developers or not. Our study demonstrated
that issue reports with images are described in fewer words and do
not affect their resolution times.

ACKNOWLEDGMENT
This research was partially supported by double_blind.

REFERENCES

[1]

[2

[3]

[4

[5

[6

[7

[8

[9

[10]

(1]

[12]

[13]

[14]

[15]

[16]

Atlassian. [n.d.]. JIRA Software. Atlassian. Retrieved feb 12, 2022 from
https://www.atlassian.com/software/jiras

Gabriele Bavota and Barbara Russo. 2015. Four eyes are better than two: On the
impact of code reviews on software quality. In Proceedings of the International
Conference on Software Maintenance and Evolution. 81-90.

Carlos Bernal-Céardenas, Nathan Cooper, Kevin Moran, Oscar Chaparro, Andrian
Marcus, and Denys Poshyvanyk. 2020. Translating video recordings of mobile
app usages into replayable scenarios. In Proceedings of the 42nd International
Conference on Software Engineering. 309-321.

Nicolas Bettenburg, Sascha Just, Adrian Schroter, Cathrin Weil3, Rahul Premraj,
and Thomas Zimmermann. 2007. Quality of bug reports in Eclipse. In Proceedings
of the Workshop on Eclipse Technology eXchange. 21-25.

Pamela Bhattacharya and Iulian Neamtiu. 2011. Bug-fix time prediction models:
can we do better?. In Proceedings of the 8th International Working Conference on
Mining Software Repositories. 207-210.

Pamela Bhattacharya, Liudmila Ulanova, Iulian Neamtiu, and Sai Charan Koduru.
2013. An Empirical Analysis of Bug Reports and Bug Fixing in Open Source
Android Apps. In Proceedings of the 17th European Conference on Software
Maintenance and Reengineering. 133—143.

Silvia Breu, Rahul Premraj, Jonathan Sillito, and Thomas Zimmermann. 2010.
Information needs in bug reports: improving cooperation between developers and
users. In Proceedings of the Conference on Computer Supported Cooperative
Work. 301-310.

Lauren Brose. [n.d.]. Video upload public beta. GitHub. Retrieved feb 12, 2022
from https://github.blog/changelog/2020- 12- 16-video-upload-public-beta/
Lauren Brose. [n.d.]. Video uploads now available across GitHub. GitHub.
Retrieved Jan 22, 2022 from https://github.blog/2021-05-13-video-uploads-
available- github/

Oscar Chaparro, Carlos Bernal-Cérdenas, Jing Lu, Kevin Moran, Andrian Marcus,
Massimiliano Di Penta, Denys Poshyvanyk, and Vincent Ng. 2019. Assessing the
quality of the steps to reproduce in bug reports. In Proceedings of the 27th Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 86-96.

Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di
Penta, Andrian Marcus, Gabriele Bavota, and Vincent Ng. 2017. Detecting
missing information in bug descriptions. In Proceedings of the 11th Joint Meeting
on Foundations of Software Engineering. 396-407.

Tse-Hsun Chen, Meiyappan Nagappan, Emad Shihab, and Ahmed E. Hassan.
2014. An empirical study of dormant bugs. In Proceedings of the 11th Working
Conference on Mining Software Repositories. 82-91.

Nathan Cooper, Carlos Bernal-Céardenas, Oscar Chaparro, Kevin Moran, and
Denys Poshyvanyk. 2021. It Takes Two to TANGO: Combining Visual and Textual
Information for Detecting Duplicate Video-Based Bug Reports. In Proceedings of
the 43rd International Conference on Software Engineering. 957-969.

Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling Projects in
GitHub for MSR Studies. In Proceedings of the 18th International Conference on
Mining Software Repositories. 560-564.

Harold Valdivia Garcia, Emad Shihab, and Meiyappan Nagappan. 2018. Charac-
terizing and predicting blocking bugs in open source projects. Journal of Systems
and Software 143 (2018), 44-58.

Emanuel Giger, Martin Pinzger, and Harald C. Gall. 2010. Predicting the fix time
of bugs. In Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering. 52-56.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32

[33]

[34]

[35

[36]

[37]

[39]

[40]

ICPC 2022, May 16-17, 2022, Pittsburgh, PA, USA

GitHub. [n.d.]. Dear GitHub. GitHub. Retrieved feb 12, 2022 from https:
//github.com/dear- github/dear- github

Philip J. Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Murphy.
2010. Characterizing and predicting which bugs get fixed: an empirical study
of Microsoft Windows. In Proceedings of the 32nd International Conference on
Software Engineering. 495-504.

Lile Hattori and Michele Lanza. 2008. On the nature of commits. In Proceedings
of the 23rd International Conference on Automated Software Engineering. 63-71.
Yihui He, Chenchen Zhu, Jianren Wang, Marios Savvides, and Xiangyu Zhang.
2019. Bounding Box Regression with Uncertainty for Accurate Object Detection.
arXiv:1809.08545 [cs.CV]

Kim Herzig, Sascha Just, and Andreas Zeller. 2013. It’s not a bug, it’s a fea-
ture: how misclassification impacts bug prediction. In Proceedings of the 35th
International Conference on Software Engineering. 392-401.

Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. 2009. Improving bug
triage with bug tossing graphs. In Proceedings of the 7th joint meeting of the
European Software Engineering Conference and the International Symposium on
Foundations of Software Engineering. 111-120.

Mona Erfani Joorabchi, Mehdi MirzaAghaei, and Ali Mesbah. 2014. Works
for me! characterizing non-reproducible bug reports. In Proceedings of the 11th
Working Conference on Mining Software Repositories. 62-71.

Yutaro Kashiwa, Hayato Yoshiyuki, Yusuke Kukita, and Masao Ohira. 2014.
A Pilot Study of Diversity in High Impact Bugs. In Proceedings of the 30th
International Conference on Software Maintenance and Evolution. 536-540.
Alex Krizhevsky, Ilya Sutskever, and Geoftrey E. Hinton. 2012. ImageNet Classi-
fication with Deep Convolutional Neural Networks. In Proceedings of the 26th
Annual Conference on Neural Information Processing Systems. 1106—1114.

Yuki Noyori, Hironori Washizaki, Yoshiaki Fukazawa, Hideyuki Kanuka, Keishi
Ooshima, Shuhei Nojiri, and Ryosuke Tsuchiya. 2021. What are the Features
of Good Discussions for Shortening Bug Fixing Time? IEICE Transactions on
Information and Systems 104-D, 1 (2021), 106-116.

Masao Ohira, Ahmed E. Hassan, Naoya Osawa, and Ken-ichi Matsumoto. 2012.
The impact of bug management patterns on bug fixing: A case study of Eclipse
projects. In Proceedings of the 28th International Conference on Software Mainte-
nance. 264-273.

Bugzilla Org. [n.d.]. Bugzilla. Bugzilla Org. Retrieved feb 12, 2022 from
https://www.bugzilla.org/

Lucas D. Panjer. 2007. Predicting Eclipse Bug Lifetimes. In Proceedings of the
4th International Workshop on Mining Software Repositories. 29.

Mary C Potter and Barbara A Faulconer. 1975. Time to understand pictures and
words. Nature 253, 5491 (1975), 437-438.

Mohammad Masudur Rahman, Foutse Khomh, and Marco Castelluccio. 2020.
Why are Some Bugs Non-Reproducible? : -An Empirical Investigation using
Data Fusion-. In Proceedings of the 36th International Conference on Software
Maintenance and Evolution. 605-616.

Gerard Salton and Christopher Buckley. 1988. Term-weighting approaches in
automatic text retrieval. Information processing & management 24, 5 (1988),
513-523.

Emad Shihab, Akinori Ihara, Yasutaka Kamei, Walid M. Ibrahim, Masao Ohira,
Bram Adams, Ahmed E. Hassan, and Ken-ichi Matsumoto. 2013. Studying re-
opened bugs in open source software. Empirical Software Engineering 18, 5
(2013), 1005-1042.

Robert G. D. Steel. 1961. Some Rank Sum Multiple Comparisons Tests. Biomet-
rics 17,4 (1961), 539-552.

Shahed Zaman, Bram Adams, and Ahmed E. Hassan. 2011. Security versus
performance bugs: a case study on Firefox. In Proceedings of the 8th International
Working Conference on Mining Software Repositories. 93—102.

Feng Zhang, Foutse Khomh, Ying Zou, and Ahmed E. Hassan. 2012. An Empirical
Study on Factors Impacting Bug Fixing Time. In Proceedings of the 19th Working
Conference on Reverse Engineering. 225-234.

Bo Zhou, Iulian Neamtiu, and Rajiv Gupta. 2015. Experience report: How do bug
characteristics differ across severity classes: A multi-platform study. In Proceed-
ings of the 26th International Symposium on Software Reliability Engineering.
507-517.

Thomas Zimmermann, Nachiappan Nagappan, Philip J. Guo, and Brendan Murphy.
2012. Characterizing and predicting which bugs get reopened. In Proceedngs of
the 34th International Conference on Software Engineering. 1074-1083.
Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian
Schréter, and Cathrin Weiss. 2010. What Makes a Good Bug Report? /EEE
Transactions on Software Engineering 36, 5 (2010), 618-643.

Weigin Zou, Xin Xia, Weigiang Zhang, Zhenyu Chen, and David Lo. 2015. An
Empirical Study of Bug Fixing Rate. In Proceedngs of the 39th Annual Computer
Software and Applications Conference. 254-263.


https://www.atlassian.com/software/jiras
https://github.blog/changelog/2020-12-16-video-upload-public-beta/
https://github.blog/2021-05-13-video-uploads-available-github/
https://github.blog/2021-05-13-video-uploads-available-github/
https://github.com/dear-github/dear-github
https://github.com/dear-github/dear-github
https://arxiv.org/abs/1809.08545
https://www.bugzilla.org/

	Abstract
	1 Introduction
	2 Study Design
	2.1 Research Questions
	2.2 Context Selection
	2.3 Data Collection
	2.4 Analysis

	3 Results
	4 Discussion
	4.1 Are Visual Issue Reports and Non-Visual Issue Reports Used for Similar Aims?
	4.2 Future Research Direction

	5 Related Work
	6 Conclusion
	References

