Noname manuscript No.
(will be inserted by the editor)

Understanding the Characteristics and the Role of Visual
Issue Reports

Hiroki Kuramoto - Dong Wang =< - Masanari
Kondo - Yutaro Kashiwa - Yasutaka Kamei -
Naoyasu Ubayashi

Received: date / Accepted: date

Abstract Issue reports are a pivotal interface between developers and users for re-
ceiving information about bugs in their products. In practice, reproducing those bugs
is challenging, since issue reports often contain incorrect information or lack suffi-
cient information. Furthermore, the poor quality of issue reports would have the effect
of delaying the entire bug-fixing process. To enhance bug comprehension and facili-
tate bug reproduction, GitHub Issue allows users to embed visuals such as images and
videos to complement the textual description. Hence, we conduct an empirical study
on 34 active GitHub repositories to quantitatively analyze the difference between vi-
sual issue reports and non-visual ones, and qualitatively analyze the characteristics of
visuals and the usage of visuals in bug types. Our results show that visual issue reports
have a significantly higher probability of reporting bugs. Visual reports also tend to
receive the first comment and complete the conversation in a relatively shorter time.
Visuals are frequently used to present the program behavior and the user interface,
with the major purpose of introducing problems in reports. Additionally, we observe
that visuals are commonly used to report GUI-related bugs, but they are rarely used
to report configuration bugs in comparison to non-visual issue reports. To summa-
rize, our work highlights the role of visual play in the bug-fixing process and lays the
foundation for future research to support bug comprehension by exploiting visuals.

Keywords Visual Issue Reports, GitHub, Mining Software Repositories

= Corresponding author - Dong Wang
College of Intelligence and Computing, Tianjin University, China.
E-mail: d.wang@ait.kyushu-u.ac.jp

Hiroki Kuramoto, Masanari Kondo, Yasutaka Kamei, Naoyasu Ubayashi
Kyushu University, Japan
E-mail: kuramoto @posl.ait.kyushu-u.ac.jp, {d.wang, kondo, kamei, ubayashi } @ait.kyushu-u.ac.jp

Yutaro Kashiwa
Nara Institute of Science and Technology, Japan
E-mail: yutaro.kashiwa@is.naist.jp

2 Kuramoto et al.

1 Introduction

The question “What makes a good issue report?” has been studied for decades and is
still the ultimate research question for many studies that aim to improve the quality of
issue reports (Bettenburg et al., 2007; Herzig et al., 2013; Zimmermann et al., 2010).
Issue reports (a.k.a. bug reports) often lack the necessary information for developers
to reproduce bugs (Joorabchi et al., 2014). For example, Zimmermann et al. (2010)
reported that stack traces and steps for reproducing a bug are considered to be helpful
by developers. The developer interview conducted by Soltani et al. (2020) similarly
stated that crash description, reproducing steps or test cases, stack traces, and user
contents are the important elements in bug reports. Moreover, their empirical results
showed that on average, over 70% of bug reports lack these elements. However, it is
difficult for users to provide the needed information in practice, and the information
is often insufficient or incorrect. This mismatch between what developers need and
what reporters can provide would further delay the fixing process of bugs (Joorabchi
et al., 2014). Specifically, numerous studies have demonstrated that the quality of
issue reports impacts both the issue resolution time (Breu et al., 2010; Guo et al.,
2010) and the issue resolution rate (Zimmermann et al., 2012; Zou et al., 2015).

To facilitate developers’ bug-reproduction work, GitHub Issue includes features
designed for users to embed visual content, such as images and videos. For instance,
since May 2021,' GitHub launched a new feature that allows users to share videos
(e.g., mp4 files). By utilizing these videos, developers can create detailed bug re-
ports by recording the symptoms, reproduction steps, and other important aspects of
the issue. Visual content can help developers understand the nature of the bug and
what users were doing when the bug occurred. Recent work also observed that de-
velopers are increasingly sharing visual content in social coding environments (e.g.,
Bugzilla and Stack Overflow) and developers regard visual content as an important
element (Nayebi, 2020; Wang et al., 2023). Meanwhile, Taesiri et al. (2022) con-
firmed that utilizing the information from the gameplay videos is useful in identify-
ing bugs. However, few studies empirically analyze the impact of these visuals on
the bug-fixing process and the role that visuals play in understanding issue reports.

A comprehensive understanding of the visual content would provide valuable in-
sights into facilitating OSS members in engaging in more efficient discussions and
researchers in developing automated tools to extract useful knowledge (e.g., repro-
duction information) during the issue resolution process.

In this paper, we conducted an empirical study of 683,810 issue reports from
34 GitHub repositories to demystify the popularity of visual content in GitHub Is-
sues, quantitatively analyze the difference between visual issue reports and non-visual
ones, and qualitatively analyze the characteristics and the usage of the visual content.
Four research questions are formulated to guide this study:

RQ1: To what extent are visual issue reports used for reporting bugs?

Motivation: Issue reports on GitHub are used for a variety of purposes, including
bug reporting, questions, feature requests, and development management. Especially
bug reporting requires precise and accurate information to reproduce unexpected be-

! https://github.blog/2021-05-13-video-uploads-available-github

https://github.blog/2021-05-13-video-uploads-available-github

Understanding the Characteristics and the Role of Visual Issue Reports 3

havior (Joorabchi et al., 2014). We assume that developers may tend to report bugs
more frequently using visuals, as visuals are likely to provide more comprehensive
information. Therefore, in this RQ, we investigate the difference in the frequency of
bug reporting between visual issue reports and non-visual ones.
Results: Our results suggest a greater preference for the use of visuals when report-
ing issues related to bugs. Specifically, compared to issue reports without visuals, the
ones that contain images or videos have a significantly higher probability of reporting
bugs, 44.6% and 71.1% (roughly 1.4-2.2 times) being identified.
RQ2: What is the relationship between visuals and the bug-fixing process?
Motivation: Existing work has extensively studied the effect of various elements on
bug resolution (Soltani et al., 2020; Chen et al., 2021). However, the effect of visuals
(images or videos), a popularly used non-textual element in modern society, is largely
unknown. Thus, we would like to explore whether or not the presence of visuals
also plays a role specifically in terms of three dimensions: report content, discussion
process, and bug fixing.
Results: In terms of report content, compared to non-visual issue reports, the length of
descriptions is relatively smaller in the visual ones. In terms of the discussion process,
the statistical results confirm that the visual issue reports are likely to receive the first
comments and complete the discussion conversation faster. In terms of bug fixing, it
takes a relatively shorter time for issue reports with images to be closed.
RQ3: What are the contents and purposes of visuals used in the issue reports?
Motivation: Although the prior work reported that developers are increasingly using
visuals in issue tracking systems (Nayebi, 2020), it remains unclear what characteris-
tics these visuals have (e.g., contents and their purposes). Analyzing their character-
istics will lay the foundation for understanding the role of visuals as complementary
pieces of information when reporting bugs.
Results: Seven kinds of visual content and five kinds of purposes are classified from
our manual analysis of 959 visuals. We observe that visuals are commonly used to
depict the output of the program behavior and the user interface (for instance, 41.3%
and 20.8% for images, respectively). Results show that regardless of whether images
or videos, visuals are commonly used to provide an example in a report, followed by
helping to identify the issue cause.
RQ4: What bug types are raised in visual issue reports?
Motivation: Several studies have generally categorized the bug types (Catolino et al.,
2019; Nayrolles and Hamou-Lhadj, 2018). Considering the intuitive nature of visu-
als, we assume that visuals could be utilized in the specific bug types by developers.
Answering this question would help developers gain a better understanding of the
extent to which visuals are used in different bug types.
Results: Through a manual analysis of 1,124 issue reports (including the control
group), results show that on the one hand visuals are much more common to be used
in reporting GUI-related bugs, around 2-3 times. On the other hand, the second com-
mon bug type (i.e., Configuration bug) in non-visual reports is rarely being reported
in visual ones (19.6% against 1.1%). It relatively takes less time for issue reports with
images that report GUI-related and performance bugs to receive the first comment.
In summary, our contributions are three-fold: (I) we use quantitative analysis to
shed light on the difference in effects between visual issue reports and non-visual

4 Kuramoto et al.

ones; (II) we use qualitative analysis to manually classify visual characteristics, which
can be utilized for future large-scale studies using an automated classifier; (II) third,
we highlight the role of visuals as an important element in understanding issue re-
ports through qualitative analysis, complementing the knowledge regarding the good
quality of a bug report. We provide a public replication package’ to encourage future
replication studies.

Paper Extension. This paper extends our previous study, as a short paper of an in-
ternational conference (Kuramoto et al., 2022). For the studied dataset, we collected
approximately twice as many issue reports from more active GitHub repositories.
We newly proposed RQ1 to examine the bug rates of visual issue reports. In RQ2,
we re-evaluated the relationship between visuals and the bug-fixing process by in-
troducing additional metrics to gain a more comprehensive understanding, including
the frequent words in the description, the last comment time, and the number of par-
ticipants. RQ3 and RQ4 were completely new to this paper. We conducted a series
of manual analyses to classify the characteristics (i.e., the contents and purposes) of
visuals used in the issue reports, as well as the types of bugs raised in visual issue
reports compared to non-visual ones. Additionally, we investigated the relationship
between the characteristics and the bug types. Based on these new empirical results,
we provide a more insightful discussion about the implications and challenges.
Paper Organization. The remainder of this paper is organized as follows. Section 2
describes the data preparation process. Sections 3 — 6 present the experiments that we
conducted to address RQ1-RQ4 with their results, respectively. Section 7 discusses
the main findings of our study with future work. Section 8 discloses threats to validity
of our study. Section 9 situates this paper with respect to the related work on bug
fixing time and non-textual information sharing in software development. Finally, we
conclude the paper in Section 10.

2 Dataset Preparation

In this section, we first introduce the studied repositories, then describe the data col-
lection and identification of visual reports, and finally present the dataset description.

Studied Repositories. To understand the characteristics of the issue reports that con-
tain visual content, we mined GitHub, one of the most popular social coding plat-
forms. In this study, we chose the repositories that actively maintain the issue tracker,
employing the GitHub Search (Dabic et al., 2021). We assume that the active issue
tracker is more likely to have visual issue reports and is representative to be inves-
tigated. GitHub Search can be queried through a web application that allows the
selection of various combinations of criteria needed for a study. To make sure that
the repositories perform the development actively, we collected those projects that
contain more than 10,000 issue reports created during the last five years (since 2017),
resulting in 108 repositories by the end of June 2022. In our preliminary study (Ku-
ramoto et al., 2022), we observed that visual content started being attached to issue

2 https://doi.org/10.5281/zenodo. 10565699

https://doi.org/10.5281/zenodo.10565699

Understanding the Characteristics and the Role of Visual Issue Reports 5

Table 1 Statistical summary of studied dataset

Data Attributes

Studied Period 2017 - 2022.06
Studied GitHub Repositories 34
Studied Issue Reports 481,603
Issue Reports Contain Images 79,212 (17.10%)
Issue Reports Contain Videos 9,615 (2.30%)
Images per Issue Reports (1st Qu./Median/3rd Qu.) 1.0/1.0/2.0
Videos per Issue Reports (1st Qu./Median/3rd Qu.) 1.0/1.0/1.0

reports around 2017. Hence, we decided to limit our dataset collection to the most
recent five-year period. We also argue that the more recent the issue report, the more
likely it is to have a visual attached to it. During our preliminary work, we also re-
alized that one threat exists, where the pull requests could be wrongly counted as
issue reports that were retrieved from the GitHub Search. Then, for each of the is-
sue report candidates from 108 repositories, by checking whether the issue contains
pull request key,” we automatically distinguished them into issue reports (i.e., true
positives) and pull requests (i.e., false positives). After we excluded the false posi-
tives, finally 34 repositories met the criteria, i.e., more than 10,000 issue reports were
created since 2017.

Data Collection and Cleaning. For the remaining 34 selected repositories, we then
retrieved all the issue reports and their metadata (e.g., title and description, created
time, comment time), using get_issue function provided by PyGitHub" that inter-
nally executes GitHub API v3. To ensure the quality of the studied issue reports, we
did the following five filters. First of all, we filtered out those issue reports with open
status since we can not calculate the resolution time of these issue reports. We were
able to collect 683,810 closed issue reports. Secondly, we filtered out those issue re-
ports that were written in languages other than English and therefore excluded 11,856
non-English issue reports. Third, we filtered out those issue reports that were resolved
in a very short period, because developers sometimes report issues after treatment.
Thus, we excluded another 5,541 issue reports that were resolved within 30 seconds.
Fourth, we filtered out issue reports submitted by bots. To do so, we referred to the
work of Golzadeh et al. (2022), which systematically compares the performance of
the existing bot detection techniques, and we leveraged the combination of two bot
detection techniques with the highest precision known as “bot” suffix and list of bots.
“bot” suffix is a technique that relies on the presence of the string “bot” at the end
of the author’s name, which has notably been used by other researches (Dey et al.,
2020; Saadat et al., 2021). The list of bots refers to the technique that relies on a
predefined list of ground-truth bots manually validated by Golzadeh et al. (2021).
We excluded 158,506 issue reports submitted by bots. Finally, based on the tags pro-
vided by GitHub, we filtered out those invalid issue reports. We excluded 24,904
issue reports with tags that indicate invalid issues (i.e., “duplicated” and “invalid”).

3 https://github.com/PyGithub/PyGithub/issues/2206
4 https://pygithub.readthedocs.io/en/latest/index.html

https://github.com/PyGithub/PyGithub/issues/2206
https://pygithub.readthedocs.io/en/latest/index.html

6 Kuramoto et al.

vindl commented on Feb 27, 2021 o) oo

Template previews are covered by block toolbar in the Site Editor. To reproduce, try hovering over a template when a block
toolbar is in the area where it usually renders:

Templates

404
Used when the queried content cannot be
found

Index
‘The default template which is used when no
other template can be found

©

Fig. 1 A visual issue report containing an image (https://github.com/wordpress/gutenberg/
issues/29392).

Note that tags may be changed to an arbitrary notation (e.g., “Type:duplicated” and
“State:duplicated”). Hence, we further excluded issue reports in the same way no-
tations containing strings that match those tags. 483,003 issue reports survived and
were used in our subsequent analyses, as shown in Table 1.

Identification of Visual Issue Reports. To identify the visual contents (i.e., images
and videos) that are embedded in the textual description of an issue report, we applied
regular expressions (i.e., https.//(user-images|cloud\camolraw)\ githubuserconteni\.com/[a-
ZA-Z0-9\-/]+\.[a-zA-Z0-9]+) to search for hyperlinks that indicate visual contents.
Specifically, for an image, we used a list of image file extension types (i.e., “png”,
“PNG”, “jpg”, “JPG”, “jpeg”, and “JPEG”) to retrieve image-related links. While,
for a animation (i.e., GIF) or a video, we used a list of file extension types (i.e.,
“gif”, “GIF”, “mp4”, “MP4”, “mov”, “MOV”, “webm”, and “WEBM”) to retrieve
animation-related or video-related links. We noticed that an issue report could con-
tain both an image and an animation/video. In our work, we consider videos and im-
ages as two distinct visual types being investigated. They may have different roles in
the bug-reporting process, with videos often providing richer information. To elim-
inate confounding factors influenced by each other, we excluded these 1,400 issue
reports from both 80,612 issue reports containing images and 11,015 issue reports
containing animations/videos. In the end, as shown in Table 1, we were able to col-
lect 125,355 images from 79,212 issue reports and 10,821 animations/videos from
9,615 issue reports. Figure | presents an issue report containing an image to dis-
play the problematic user interface. Any issue reports without image/video-related
hyperlinks in the descriptions were classified as non-visual issue reports, resulting in
392,776 reports.

https://github.com/wordpress/gutenberg/issues/29392
https://github.com/wordpress/gutenberg/issues/29392

Understanding the Characteristics and the Role of Visual Issue Reports 7

Popularity of Visual Issue Reports. We now briefly characterize the popularity of
issue reports that contain visual content. Figure 2 depicts the trend of the studied
issue reports per year during our time span, i.e., between 2017 and June 2022. The
figure shows that the ratio of issue reports that have visual content (either images or
animations/videos) out of all issue reports generally follows an upward trend. Specif-
ically, the ratio of visuals reached 27.4% in 2021, compared to 14.9% in 2017. The
relatively low ratio in 2022 compared to 2021 is reasonable, as our data collection
period only covered half a year. Interestingly, we find that although GitHub officially
launched the feature to share videos in May 2021, developers had already embedded
animations with issue reports before that. During the manual inspection, we observe
that these videos are related to GIF files.

25

m img
| == anm/vid

Percentage of Issues (%)

12017 2018 2019 2020 2021 2022
Year

Fig. 2 The proportion of visual issue reports (i.e., images and animations/videos) per year.

3 RQ1: To what extent are visual issue reports used for reporting bugs?

GitHub issue reports are served for diverse purposes, such as bug reporting, ques-
tions, feature requests, and development management. Since reporting a bug requires
more precise and accurate information than other purposes, developers could be more
likely to use visual content due to its advantage of conveying comprehensive infor-
mation. Hence, in this section, we first set out to explore how frequently visuals con-
tribute to bug reporting. Below, we present our approach to analyzing the usage of
visual contents in issue reports (Section 3.1), followed by the results (Section 3.2).

3.1 Approach
To address RQ1, we conduct a quantitative analysis to determine the extent to which

visual issue reports contribute to bug reporting. Similar to our exploratory study (Ku-
ramoto et al., 2022), we divided the visual contents into two kinds: Image (/mg)

8 Kuramoto et al.

and Animation/Video (Anm/Vid), since we conjecture that the image and the anima-
tion/video play different roles. We used the 481,603 issue reports from the data col-
lection, comprising 79,212 issue reports containing images and 9,615 issue reports
containing animations/videos.

Bug/Non-bug Classification. We classify issue reports into bug-related issues and
non-bug issues based on the tags provided by GitHub similar to the prior work (Li
et al., 2023). To do so, we first collected 5,079 distinct tags from 481,603 issue re-
ports. Then, the first author manually inspected these tags and observed that those
tags including the following keywords “bug”, “crash”, “defect”, “regression”, and
“unexpected behavior” are used to indicate bugs. To evaluate the accuracy of the
keyword-based method, we randomly selected 30 instances from each keyword group
and the first author manually validated a total of 150 instances to confirm whether or
not they are real bug reports. The evaluation result suggested that the keyword-based
method was robust enough to be applied, where all the validated instances were re-
lated to reporting bugs. Afterward, issue reports were automatically classified into
bug/non-bug ones by the presence of the keywords in their tags. Note that non-bug
tags (e.g., “not-bug”, “not a defect”), which are used in some specific projects, were
also taken into account. In addition, to reduce the threat posed by untagged issues,
we filtered out 88,592 untagged issues from 481,603 issue reports. Finally, the issue
reports were classified into 138,458 bug-related ones and 254,553 non-bug reports.
We then calculated the proportion percentage of bug reports in terms of visual (image
and animation/video, respectively) and non-visual content.

We further propose the following hypothesis to test:
U (H1.1) Visual issue reports tend to describe bugs.
For the H1.1, the rates of issue reports that are used for reporting bugs by each type
(i.e., None, Img, and Anm/Vid) are statistically compared. First, we adopt the Chi-
squared Test (Pearson, 1900), a multiple comparison test, to examine the difference
among the three types. Afterward, we perform the two-proportions Z-test (Casella
and Berger, 2021) as a post-hoc test, which is a statistical test used to determine
whether two proportions are different from each other. In addition, Cohen’s /& (Cohen,
2013) is applied to measure the effect size between two proportions (k2 = 0.20, small;
h =0.50, medium; i = 0.80, large).

3.2 Results

Visual issue reports are more likely to report bugs. Table 2 shows the rates of issue
reports that contain at least one of the bug-related tags (BugRate) divided by three
issue types. As we can see from the table, visual issue reports tend to report bugs
more frequently when compared to non-visual ones. For example, the rates of Img
and Anm/Vid are 44.6% and 71.1%, separately, whereas the rate of None is only
32.2%. The statistical result of the Chi-squared test suggests that there is a significant
difference among the three types of issue reports. The two-proportion Z-Test further
confirms a significant difference between pairs, with p-values < 0.001 for Img vs.
None and Anm/Vid vs. None, respectively. Additionally, the measured variances of

Understanding the Characteristics and the Role of Visual Issue Reports 9

Table 2 Rate of the issue reports related to bug reporting.

Chi-squared p-value Cohen’s i
IssueType ‘ #Issues #Bugs BugRate p-value (vs. None) (vs. None)
None 316,758 102,087 0.322 - -
Img 67,218 20,947 0.44c 1 o = 0.256 (small)
Anm/Vid 9,035 6,424 071110 =% 0.800 (large)

0 p>0.05; * p<0.05; xx p<0.01; *** p<0.001

Cohen’s h show that there exist a small effect (0.256) and a large effect (0.800) be-
tween Img vs. None, and Anm/Vid vs. None, respectively. These results suggest that
the hypothesis: (HI.1) Visual issue reports tend to describe bugs is supported.

RQ1 Summary

Compared to issue reports that do not have visual content, the ones that con-
tain images or videos have a significantly higher probability of reporting
bugs, 44.6% and 71.1% (roughly 1.4-2.2 times) being identified, respectively.
The result indicates that visual contents are more likely to be used for the pur-
pose of reporting bugs.

4 RQ2: What is the relationship between visuals and the bug-fixing process?

Compared to plain texts in non-visual issue reports, images or videos could facilitate
the communication-intensive process as a picture is worth a thousand words (Wang
et al., 2023). In this section, we take a further look at how visual issue reports are dif-
ferent from non-visual issue reports by examining three dimensions. For the dataset,
we utilize a total of 138,458 issue reports that are related to reporting bugs, which
were identified in RQ1 (Section 3). Below, we present our approach to quantitatively
analyze the difference between visual and non-visual issue reports (Section 4.1), fol-
lowed by the results (Section 4.2).

4.1 Approach

To answer RQ2, we perform quantitative analysis to investigate the characteristic
difference between the issue reports that have visual contents (i.e., images and ani-
mations/videos) and the ones that do not have any visual contents. Specifically, based
on the available dataset attributes, we analyze the differences in the following three
main dimensions that are studied commonly in the literature: the issue report itself
(Report), the process of the issue discussion (Discussion), and the issue resolution
(Fix). Table 3 shows the three studied dimensions with their defined metrics. Note that
during the quantitative analysis, we compare the difference between the issue reports

10 Kuramoto et al.

not having visuals (None) and the issue reports having images (Img), and the differ-
ence between None and the issue reports having animations or videos (Anm/Vid),
separately. Below we describe our approach in detail for each dimension along with
the rationale of its selected metrics.

(I) Report dimension. Potter and Faulconer (Potter and Faulconer, 1975) showed
that, in general, visual images are a more effective approach for describing what peo-
ple want to communicate compared with text. Inspired by that, we assume that anima-
tions/videos or images can reduce the effort for reporting bugs. Hence, we introduce
the below two metrics to understand how an issue report containing visual contents
is different from the ones that only have text in the view of their report contents:

— DescriptionLength: is the number of words written in the description. Note that
we only look at the description of an issue report, excluding its title. Meanwhile,
URLs to attach images or animations/videos, code blocks, and tables are not
counted as words. We notice that issue reports are likely to adopt the issue tem-
plates that are provided by specific projects, which may introduce a threat. To
relieve this, we leverage the method provided by Li et al. (2023) to remove the
set of common template-related items (e.g., “describe the bug”, “library version”,
etc.).

— DescriptionWords: refers to the frequently occurring keywords in the description.
To do so, we calculate TF-IDF values to quantify the frequency of characteris-
tic keywords for each type of issue (i.e., Anm/Vid, Img, and None), applying
the common data pre-processing including tokenization, stop word removal, and
stemming on the cleaned descriptions (removal of URLS, code block, tables, and
templated-related items). We conjecture that characteristic keywords tend to dif-
fer among the issue types (i.e., Anm/Vid, Img, and None).

After measuring the above metrics, we further introduce a hypothesis to validate:

A (H2.1) “An issue report having visual contents include fewer words.”

To examine the H2.1, we first elect the Kruskal-Wallis test (Kruskal and Wallis, 1952)
as a non-parametric test for comparing the differences among multiple independent
groups (three types of issue reports). Then, to statistically compare the difference
between pairs, we apply the Steel test (Casella and Berger, 2021). Steel test performs
the multiple comparisons, taking into account the number of comparisons to prevent
increases in the family-wise error rate. The studied dataset does not follow normal

Table 3 Attributes collected from the issue reports

Dimension Metrics Description
Report Images Number of images in the description
Videos Number of videos in the description

DescriptionLength Number of words in the description
DescriptionWords Words in the description
Discussion FirstCommentTime Days until the first comment is made

Comments Number of comments in the issue report
LastCommentTime Days until the last made comments
Participants Number of people who wrote comments

Fix ClosedTime Days to close the issue

Understanding the Characteristics and the Role of Visual Issue Reports 11

distributions and does not satisfy homoscedasticity, hence it is appropriate to apply
the Steel test. We determined the sample size for each attribute based on the criteria,
significance level = 0.05 and confidence interval = 95%, and defined the alternative
hypothesis as that true relative contrast effect p-value is not equal to 1/2 (i.e., two-
sided test). A p-value less than one-half means that the treatments tend to be smaller
than the control class. Moreover, we apply Cliff’s 6 (Cliff, 1993), a non-parametric
metric, to measure the effect size. Effect size is analyzed as follows: (1) [§| < 0.147
as Negligible, (2) 0.147 < |8] < 0.33 as Small, (3) 0.33 < |6| < 0.474 as Medium,
or (4) 0.474 < |§| as Large (Romano et al., 2006).

(1I) Discussion dimension. Joorabchi et al. (2014) cited that lack of proper com-
munication between reporters and developers often ends up with reports in which
the reported bugs are not able to be reproduced. In addition, many studies claimed
that comments made to a bug contribute to improving bug-fixing activities (Giger
et al., 2010; Panjer, 2007; Zhang et al., 2012). Visual issue reports might have the
potential to increase the quality of communication between reporters and developers.
Developers could quickly understand the reported bugs vividly, which may reduce
the needless exchange of confirmation comments. In terms of Discussion dimension,
we define the following three metrics to measure the difference:

— FirstCommentTime: is the duration (#days) from when the author submits an issue
report until when the first comment is made.

— Comments: denotes the number of comments that are made in an issue report.

— LastCommentTime: refers to the duration (#days) from when the author submits
an issue report until when the last comment is made.

— Participants: is the number of developers who participated in the issue discussion
by making comments.

We remove the comments that are made by bots since our focus is on developers. We
apply the same technique described in our data collection to remove bot commenters.
Based on the above metrics, we propose three hypotheses:

1 (H2.2) “An issue report having visual contents receives the quicker.”

1 (H2.3) “An issue report having visual contents receives fewer comments.”

U (H2.4) “An issue report having visual contents takes a shorter time to complete the
conversation.”

A (H2.5) “An issue report having visual contents are resolved with fewer partici-
pants”.

To validate these four hypotheses and measure their effect sizes, similarly, we invoke
the Kruskal Wallis test, the Steel test, and Cliff’s §.

(I1l) Fix dimension. Zimmermann et al. (2010) reported that issue reports occa-
sionally have missing or incorrect steps to reproduce bugs, which delays the entire
bug-fixing process. Also, Ohira et al. (2012) showed that bug-fixing activities are
delayed when the reporter and developer are different persons because this situation
requires communication between the two. We assume that embedding visual content
may mitigate this issue by facilitating their communication, and further shorten the
resolution time. Thus, we raise the two metrics to understand the Fix dimension:

— ClosedTime: refers to the duration (#days) from when the author submits an issue
report until when the issue is finally closed.

12 Kuramoto et al.

Number of words
N N
2 a2 8 & 8 & &
g8 8 8 &8 8 8 8

a
S

o

None Img Anm/Vid

Fig. 3 Report dimension - Number of words in the description of an issue report.

Related to the Fix dimension, we propose the following hypothesis:

1 (H2.6) “An issue report having visual contents is closed quicker.”

To confirm this hypothesis, we consistently adopt the Kruskal-Wallis test and the
Steel test to examine the significance of the statement, and we also use Cliff’s d to
measure the effect size.

4.2 Results
(I) Report Dimension

The description length of visual issue reports is shorter than that of those without
visual content. Figure 3 shows the distribution of the number of words in the descrip-
tions of issue reports and Table 4 shows the statistical values of DescriptionLength
metric including the p-values of the Kruskal-Wallis test and the Steel test, and the
values of the effect sizes. When compared to non-visual issue reports (i.e., None),
as shown in the figure, we observe that visual issue reports (i.e., Img and Anm/Vid)
relatively contain smaller numbers of words in the descriptions. Specifically, the me-
dian values are 89 and 84 for Img and Anm/Vid, respectively, whereas the median
value is 103 for non-visual issue reports. Such results suggest that issues tend to be
explained in fewer words when a visual is attached.

The Kruskal-Wallis test confirms a significant difference among the three groups
in terms of DescriptionLength, i.e., p-value < 0.001. Furthermore, our Steel test
shows statistically significant differences between visual issue reports and non-visual
issue reports, with p-values < 0.01 for both Img vs. None and Anm/Vid vs. None.
Regarding the effect size, small effects (0.224 and 0.310) are observed between Img
and None, Anm /Vid, and None, respectively. These test results indicate that our pro-
posed hypothesis, [(H2.1) “An issue report having visual contents include fewer
words.” is supported.

Visual issue reports are likely to describe the graphical user interface. Table 5 shows
the top-20 characteristic words in each issue report kind, calculated from TF-IDF
analysis. Note that we stemmed the words to convert them to the base words. First
of all, we find that some characteristic words are likely to commonly occur in visual

Understanding the Characteristics and the Role of Visual Issue Reports 13

Table 4 The medians of studied metrics and their significance.

. . K-W’s p-value Cliff’s 6
Metrics Category Q1/Median/Q3 p-value (vs. None) (vs. None)

None 54/103/185 o - -

DescriptionLength Img 49/ 89/146 * .224 (small)
Anm/Vid 51/ 84/132 * .310 (small)

None .026/.389/3.91 o - -

FirstCommentTime Img .001/.238/3.20 * .232 (small)
Anm/Vid .007/.267/5.66 * .190 (small)

None 17275 . - -

Comments Img 17275 2 .006 (negligible)
Anm/Vid 1/2/4 2 .051 (negligible)

None 1.01/15.4/139. ok - -

LastCommentTime Img .879/9.80/77.1 o .356 (medium)
Anm/Vid .870/12.0/82.8 * .160 (small)

None 17172 ook - -

Farticipants Img 17172 ¢ 120 (negligible)
Anm/Vid 1/172 2 .092 (negligible)

None 1.71/15.0/109. ok - -

ClosedTime Img 1.90/13.7/83.7 *.037 (negligible)
Anm/Vid 2.90/18.1/102. 2 .052 (negligible)

0 p>0.05; * p< 0.05; ** p<0.01 *xx p<0.001;

issue reports (as highlighted in red boxes). Specifically, the word “when” is retrieved
by relatively higher TF-IDF values, suggesting that issue reports utilized with visuals
tend to describe the timing of specific operations (i.e., steps to reproduce). Second,
the commonly used words in animations/videos (Anm/Vid) are related to the opera-
tions and elements of graphical user interface (GUI), such as “click”, “tab”, “block”
and “button”, while the word “window” is prominent in image reports (Img) (as high-
lighted in blue boxes). In contrast, non-visual issue reports frequently use words such
as “file” and “code” that are related to programming issues (as highlighted in green
boxes). These findings suggest that non-visual issue reports are used to describe pro-
gramming things while visual ones are used to mention visible things appearing on
the screens. In all, the results of our TF-IDF analysis indicate that the characteristic
keywords tend to differ between issue reports with/without visual content.

(IT) Discussion Dimension

Visual issue reports tend to receive the s and complete the discussion conversations
faster. Figure 4 shows the related results of the Discussion dimension, including
FirstCommentTime, Comments, and Participants. Figure 4 (a) depicts the distribu-
tion of time that is taken to receive the s (FirstCommentTime) and Table 4 shows the
statistical values of the FirstCommentTime metric. We observe that the duration of
visual issue reports receiving the first comments is shorter compared to non-visual
ones. Specifically, the median values are 0.238 and 0.267 days for Img and Anm/Vid,

14

Kuramoto et al.

Table 5 Top-20 words that commonly appear in visual and non-visual issue reports.

[None Img Anm/Vid

1 issu reproduc record

2 error step step

3 | reproduc issu reproduc

5 step shot issu

7 expect expect behavior

8 ansibl error open

9 | behavior if expect
10 if 0s select
11 test screenshot test
12 file bug 0s
13 code behavior tab
14 run test if
15 type creat descript
16 | terraform what creat
17 bug see use
18 work open block
19 0s ’ window ‘ ’ button ‘
20 name set see

respectively, whereas the median value is 0.389 days for non-visual issue reports. For
Comments (number of comments that are made in an issue report), as shown in Fig-
ure 4 (b), we find that the numbers do not greatly differ from the issue report kinds,
with the same median values of two comments, but reveals that Anm/Vid tends to
have slightly fewer comments. Figure 4 (c) obviously shows that visual issue reports
tend to complete the conversation faster than non-visual ones. Specifically, the me-
dian values of Img and Anm/Vid are 9.8 and 12.0 days, separately, while the median
value of None is 15.4 days. Figure 4 (d) presents the distribution of the number of
participants (Participants). From the box plot, we observe that there is no difference
between Img, Anm/Vid, and None.

The statistical tests on the one hand reveal that significant differences do ex-
ist concerning FirstCommentTime and LastCommentTime metrics for both Img vs.
None and Anm/Vid vs. None, as shown in Table 4. On the other hand, with regard
to Comments and Participants metrics, there are no significant differences (i.e., p-
values > 0.05 for both Img vs. None and Anm/Vid vs. None). In addition, regarding
FirstCommentTime and LastComment Time metrics, small or medium effects are ob-
served between Img and None, Anm/Vid and None, respectively. We now summarize
the validation of the four proposed hypotheses:

A (H2.2) “An issue report having visual contents receives the first comment quicker.”
is supported.

1 (H2.3) “An issue report having visual contents receives fewer comments.” is not
supported.

A (H2.4) “An issue report having visual contents takes a shorter time to complete the

Understanding the Characteristics and the Role of Visual Issue Reports 15

14 12
2 210
° T
@10 £
© €8
G s 8
= -
: 5o
E° 2
z £ 4
¢ z
2) 2

None Img Anm/Vid None Img Anm/Vid

(a) Time taken to receive the first comments. (b) Number of comments during the discussion
process.

@ a
& 38
3 8
o

Now
o 8
3 3
IS

@
3

Number of days
g
~

Number of participants
w

=]
3

o
3

Al |

None Img Anm/Vid None Img Anm/Vid

o

(c) Time taken to receive the last comments. (d) Number of participants during the discus-
sion process.

Fig. 4 Discussion dimension - FirstCommentTime, Comments, LastCommentTime, and Participants.

conversation.” is supported
A (H2.5) “An issue report having visual contents are resolved with fewer partici-
pants.” is not supported.

(IIT) Fix Dimension

Time taken to close the issue reports with the image is relatively shorter. Figure 5
presents the distribution of time taken for issue reports to be closed (ClosedTime).
As shown in the figure, we find that compared against non-visual issue reports (i.e.,
the median value is 15.0 days), it takes less time for issue reports with images (Img)
to be closed (i.e., the median value is 13.7 days). On the other side, the median value
of Anm/Vid is 18.1 days, which is longer than non-visual issue reports.

Furthermore, the statistical results of the Kruskal-Wallis test and the Steel test
confirm significant differences between Img and None. The result suggests that our
hypothesis [(H3.1) “An issue report having visual contents is closed quicker.” is
supported partially for Img. Yet only a negligible effect (0.037) is observed through
effect size analysis.

16 Kuramoto et al.

300

250

N
=3
S}

Number of days
g 2

o
3

o

None Img Anm/Vid

Fig. 5 Fix dimension - ClosedTime.

While our analyzed metrics provide insights into the relationship between visuals
and the bug-fixing process, including factors such as description length, time taken to
receive the first comments, completion of conversations, and issue closure, we cannot
establish the causality between them.

RQ2 Summary

Our quantitative results show that compared to non-visual issue reports, the
length of descriptions of the visual issue reports is significantly smaller, and
visual ones tend to describe the graphical user interface more frequently. We
also observe that the visual issue reports are likely to receive first comments
and complete discussion conversations more quickly. Moreover, it takes a
relatively shorter time for issue reports with images to be closed.

5 RQ3: What are the contents and purposes of visuals used in the issue reports?

The visual contents are diverse in the different issue report topics. Moreover, the
purpose for attaching visuals (i.e., an image or an animations/video) may differ. In
this section, we set out to better understand the usage patterns (contents and purposes)
of visuals through a manually-intensive method. Below, we present our approach
to qualitatively investigate the usage patterns (Section 5.1) and the related results
(Section 5.2).

5.1 Approach

To answer RQ3, we conduct a content analysis, one of the most broadly used quali-
tative data analysis methods (Stemler, 2000), to manually investigate usage patterns
of visual contents from the following two perspectives: “What type of visual content
is attached (VisualType); for what purpose is visual content used (VisualPurpose)?”.
We now describe the construction of the representative sample and manual coding of
visual contents and their purposes.

Understanding the Characteristics and the Role of Visual Issue Reports 17

(I) Representative Sample Construction. A total of 36,373 bug-related issue
reports contain visuals in our collected dataset, i.e., 29,947 have images and 6,424
have animations/videos as shown in Section 3. Since coding all of these instances is
impractical, we elect to code a sample of visual issue reports. Under the condition of
a confidence level of 95% and a confidence interval of 5 (Krejcie and Morgan, 1970),
we sampled 379 issue reports with images and 362 issue reports with animations
or videos. Note that the total number of visuals is greater than the number of visual
issue reports because some visual issue reports have multiple visual contents. In other
words, 559 images and 400 animations/videos from the representative issue reports
were analyzed during our manual coding analysis.

(IT) Manual Coding of Visual Contents. To the best of our knowledge, few stud-
ies empirically examined the visual contents embedded into issue reports, including
animations and videos. Hence, the first step is to construct a reliable taxonomy.

To discover as complete of a list of types of visual contents as possible, similar
to the prior work (Zanaty et al., 2018; Xiao et al., 2021), we strive for theoretical
saturation (Eisenhardt, 1989) to achieve analytical generalization. We set our satura-
tion criterion to 40 visual issue reports (i.e., 20 with images and 20 with animations
or videos). In other words, we continue to code randomly selected visual issue re-
ports until no new codes have been discovered for 40 consecutive instances. Open
coding was performed by the first three authors of this paper (the first author is a
master’s student and the other two authors have several years of research experience
with GitHub). To do so, three authors independently coded the samples in multiple
rounds. When we classified the contents of visuals, we allowed multiple codes for
each issue report as an issue report could contain more than an image or an anima-
tion/video. After each round, an open discussion was held among the three coders to
discuss each disagreed sample until a consensus was reached. Since open coding is an
exploratory data analysis technique, it may be prone to errors. To mitigate errors, af-
ter completing an initial round of coding, we performed a second pass over all of the
samples to correct miscoded entries and refine the definition of the devised taxonomy.
We repeated the process for two rounds and coded 80 visual issue reports. To validate
the understanding of the constructed taxonomy, we computed the inter-rater agree-
ment using Krippendorft’s alpha Kra (Bauer, 2007), which is commonly adopted in
software engineering research (Blincoe et al., 2016; He et al., 2023). Krippendorff’s
« can be interpreted as a measure of the degree of agreement achieved out of chance:
the larger Kro is, the better agreement is observed. As demonstrated by Krippendorff
(2019), as a rule of thumb, it is common to find that Krox > 0.667 is the threshold
needed to draw conclusions from the data. The iterative content analysis reached an
adequate Kro score, i.e., 0.682, suggesting that our taxonomy is reliable to use.

For the remaining 661 visual issue reports, three graduate students having more
than five years of programming experience were assigned to complete the manual
classification. To ensure that these students were equipped with sufficient knowledge,
under the guidance of the first author who joined the aforementioned taxonomy con-
struction, they read and re-read the description of the taxonomy by referring to the
already classified codes until a consensus was reached among the three of them. They
further conducted independent coding on another 40 samples (i.e., 20 having images
and 20 having animations or videos) randomly selected from the 661 visual issue

18 Kuramoto et al.

reports. Similarly, we used Krippendorff’s & to measure their inter-rater agreement.
The scores returned 0.684, which were above the threshold (i.e., 0.667). Encouraged
by this result, the rest of the 621 samples were divided into three sets, and the three
graduate students independently coded the corresponding set.

(IIT) Manual Coding of Visual Purposes. Agrawal et al. (2022) established a
coding taxonomy for purposes of visual issue reports in a case study of Jupyter
Notebook project hosted on GitHub. The taxonomy introduces five general purposes
that consist of eleven themes. We used this taxonomy as our initial coding schema
because it is closely relevant to our study.

To test how well the existing taxonomy can be used to classify the purposes
of our studied issue reports, the three authors (same as the manual coding of visual
contents) independently categorized the purposes of visual contents in 40 samples
(i.e., 20 having images and 20 having animations or videos). The agreement score of
Krippendorff’s o was 0.696, indicating that the three authors achieved a relatively
high level of comprehensive understanding. After the classification, an open discus-
sion was held among the three authors to resolve the disagreements and discuss the
feasibility of the taxonomy. In the end, we adopted five purpose themes for visuals in
our work as our focus is on the visuals that are embedded into the issue description.
Note that one issue report can be annotated for multiple purposes, as an issue report
can have multiple visuals. The definitions of the five purposes and corresponding
examples are described as follows:

1. Introducing problem in report: refers to the instance, in which the visual content
is used to illustrate the problem introduced in the issue description. Example:
https://github.com/rancher/rancher/issues/17310.

2. Help identifying the issue cause: refers to the instance, in which the visual con-
tent is used to show additional information about the issue (e.g., error message,
additional symptoms, behavior in another environment, etc.) to support the iden-
tification of its cause. Example: https://github.com/microsoft/vscode/
issues/105145.

3. Illustrating expected behavior: refers to the instance, in which the visual content
is used to illustrate the expected behavior of the system without a bug. Some-
times, the reporters used such visual content to compare the current behavior and
the expected behavior. Example: the second visual content in https://github.
com/godotengine/godot/issues/54688.

4. Providing instructions or workarounds: refers to the instance, in which the vi-
sual content is used to provide guidance on how to handle a problem, either as
instructions or alternative solutions to assist other participants in resolving the
issue. Example: the second visual content in https://github.com/elastic/
kibana/issues/40015.

5. Social purposes: refers to the instance, in which the visual content is used to ex-
press feelings and facilitate casual conversations. Example: the third visual con-
tentinhttps://github.com/cleverraven/cataclysm-dda/issues/43973.

For the remaining 701 visual issue reports, we assigned three graduate students
who participated in the coding experiment of visual contents to manually classify
them. Similarly, three coders independently coded another 40 samples (i.e., 20 having

https://github.com/rancher/rancher/issues/17310
https://github.com/microsoft/vscode/issues/105145
https://github.com/microsoft/vscode/issues/105145
https://github.com/godotengine/godot/issues/54688
https://github.com/godotengine/godot/issues/54688
https://github.com/elastic/kibana/issues/40015
https://github.com/elastic/kibana/issues/40015
https://github.com/cleverraven/cataclysm-dda/issues/43973

Understanding the Characteristics and the Role of Visual Issue Reports 19

images and 20 having animations or videos) to validate whether they had sufficient
knowledge to complete the classification task. The agreement score of Krippendorff’s
a reached 0.720. After the validation, the remaining 661 samples were divided into
three sets, and the three graduate students independently coded the corresponding set.

5.2 Results

Visual contents are more frequent to be used for displaying the program behavior or
the layout of the screen, with the purpose of providing examples. Seven kinds of the
visual content of issue reports are classified from our manual coding. The description
of each kind is presented as follows, along with the representative example links:

1. Code: refers to the visual content that captures programming codes that are exe-
cuted during the occurrence of the bug. Example: https://github.com/microsoft/
vscode/issues/117675.

2. Configuration: refers to the visual content that captures information about the
configuration (component arrangement, option settings, etc.) related to the bug.
Example: https://github.com/godotengine/godot/issues/17773.

3. Diagram: refers to the visual content that captures a user-created diagram/chart
or includes annotations artificially created or edited by developers. Example:
https://github.com/elastic/kibana/issues/88670.

4. Logs: refers to the visual content that captures a log history or a successful/error
message displayed in the console or pop-ups. Example: https://github. com/
eclipse/che/issues/19097.

5. Output: refers to the visual content that captures the output or behavior from
a program or an algorithm, regardless of its correctness. Example: https://
github.com/godotengine/godot/issues/48772.

6. Performance: refers to the visual content that captures the performance behav-
ior of the program when it becomes slow or freezes, as well as information
about CPU and memory usage. Example: https://github.com/gatsbyjs/
gatsby/issues/25942.

7. User Interface: refers to the visual content that displays the application or web
page interface. It includes issues related to layout or UI elements, such as unre-
sponsive buttons or changes not being reflected in the display. Example: https:
//github.com/wordpress/gutenberg/issues/29886.

8. Others: refers to the visual content that does not fit into any of the above cate-
gories. Example: the first image on https://github. com/gatsbyjs/gatsby/
issues/29213.

Figure 6 shows the distribution of kinds of visual contents and Figure 7 presents
the frequency of their purposes. As we can see from Figure 6, the most frequent visual
content is Output, accounting for 41.3% of images and 62.0% of animations/videos.
This result suggests that developers tend to show the output, the behavior of the
program, or the algorithms, along with the textual contents in the issue report. The
second common kind is User Interface, with 20.8% of images and 25.0% of ani-
mations/videos of instances being classified, followed by Logs (15.9% and 7.0% of

https://github.com/microsoft/vscode/issues/117675
https://github.com/microsoft/vscode/issues/117675
https://github.com/godotengine/godot/issues/17773
https://github.com/elastic/kibana/issues/88670
https://github.com/eclipse/che/issues/19097
https://github.com/eclipse/che/issues/19097
https://github.com/godotengine/godot/issues/48772
https://github.com/godotengine/godot/issues/48772
https://github.com/gatsbyjs/gatsby/issues/25942
https://github.com/gatsbyjs/gatsby/issues/25942
https://github.com/wordpress/gutenberg/issues/29886
https://github.com/wordpress/gutenberg/issues/29886
https://github.com/gatsbyjs/gatsby/issues/29213
https://github.com/gatsbyjs/gatsby/issues/29213

20 Kuramoto et al.

Userlinterface
Logs

Diagram 25.0%
9
15.9% 9.8%
Configuration Logs

4.8% 7.0%
. Performance
£_3:/° Code 4.5% Performance

Userinterface 20.8% 1.8% Others 1.5% (other codes)
413% GO
Output Output
(a) Visual content of images. (b) Visual content of animations/videos.

Fig. 6 Distribution of kinds of visual content. Note that “(other codes)” include Diagram (1.3%) and Code
(0.25%).

images and animations/videos, respectively). On the other hand, in terms of images,
Configuration, Performance, and Code are relatively less frequent, accounting for
4.8%, 3.2%, and 2.3%, separately. In addition, we observe that the kinds of visual
content of animations/videos are less diversified when compared to those of images.
As shown in Figure 7, we observe that the visual attached in an issue report is more
likely to introduce the problem in a report, i.e., accounting for 72.4% and 83.7% of
images and animations/videos, respectively. The second common purpose is to help
identify the issue cause, with 15.6% of images and 11.0% of animations or videos
of instances being coded, followed by the purpose of illustrating expected behavior
(9.8% and 5.3% of images and animations/videos, respectively). Providing instruc-
tions or workarounds and social purposes are the least common, with only 1.8% and
0.4% of images being classified, separately. Furthermore, we investigate the relation-
ship between visual contents and purposes by drawing a parallel category diagram.
We find that most of the images and animations/videos are consistently used to intro-
duce problems regardless of their content kinds.

Representative Examples. Now we show two representative examples to illustrate
the categories of the content and purpose of the visual. Figure 8(a) shows a visual that
is used to introduce a problem in report from our manual analysis. We classify the
image content into the user interface since the menu list and the buttons are clearly
displayed. As shown in the issue body, the text details an unexpected behavior (i.e.,
the input shows empty) in the synced machine view, and the textual contents match
the information that is conveyed from the attached visual. In this instance, although
as an example, the image is considered essential since it is tricky for a developer to
imagine the vision of the unexpected interface. Figure 8 (b) presents a visual that is
used to help identifying the issue cause. The image content records lines of log output
generated from the test code, hence we classify this content into logs. As shown in
the description, a submitter met an NSE exception problem on the output console,
but concrete exception information was not provided. Thus, a visual was attached to
show the exception logs (e.g., error: ‘No value present’) from the desktop, serving as
additional information.

20

Understanding the Characteristics and the Role of Visual Issue Reports 21

Others

Code
Performance (other purposes)
C -ation

Help identifying the issue cause (15.6%)
Diagram

Ilustrating expected behavior (9.8%)
Logs

Userlnterface

Introducing problem in report (72.4%)

Output

(a) Purposes of images.

DiaG2l8

Performance Ilustrating expected behavior (5.3%)

Logs

UserlInterface

Introducing problem in report (83.7%)

Output

Help identifying the issue cause (11.0%)

(b) Purposes of animations/videos.

Fig. 7 Relationships between visual contents and their purposes. Note that “(other purposes)” include
“Providing instructions or workarounds” (1.8%) and “Social purposes” (0.4%).

RQ3 Summary

Seven content kinds and five purpose kinds of visuals are identified. Results
show that visual contents more frequently depict the output of the program
behavior (41.3% and 62.0% for images and animations/videos, respectively)
and the user interface (20.8% and 25.0% for images and animations/videos,
respectively). We observe that the majority of visuals are served as introduc-
ing problem in report to make the textual contents intuitive.

6 RQ4: What bug types are raised in visual issue reports?
We conjecture that visuals are likely to be used in reporting specific bugs. Hence in

this section, we further take a deeper insight into what types of bugs visual issue
reports frequently raise and whether visuals play a role in fixing different types of

21

22 Kuramoto et al.

alexdima commented on 2 Jun 2020 Member

Testing #98962

In the synced machines view, press Edit next to a machine name. | would expect for the old name to appear populated and
selected in the input, but currently the input shows empty:

v SYNCED MACHINES O
[] LeftHandSide Current
[J RightHandSide V24

(a) Visual issue report that introduces problem in report.

malinthar commented on 9 May 2021 Contributor | @) ***

Description:
Accessed a symbol that does not have a type symbol and got NSE exception on the output console.
Cause is seems to be not checking whether a typesymbol is present for the accessed field.

Steps to reproduce:

test.testl;

main() [

Ballerina

led! {uri: '/home/malintha/Documents/wso2/experimental/
resent'}

t(Optional. ja

mpletions. providers. context. FieldAccessContext.getEntries

providers. context.Field xp onNodeContext . getCompletions
(FieldA
at org.balleri angser’ L roviders. context. FieldAccessExpressionNodeContext . getCompletions

til.CompletionUtil. route(CompletionUti
ionUtil.getCompletionItems (CompletionUtil.java:56)
pletionExtension.execute

ng.lang
ompletionExtension

$0

Affected Versions:
slbetal-rc1

(b) Visual issue report that helps identifying the issue cases.
Fig. 8 Representative examples. (a): https://github.com/microsoft/vscode/issues/99078, (b):

https://github.com/ballerina-platform/ballerina-lang/issues/30450.

bugs. Below, we present our approach to analyzing the bug types of issue reports
(Section 6.1) and the related results (Section 6.2).

6.1 Approach

To answer RQ4, we perform a manual analysis on the representative samples (379
issue reports with images and 362 issue reports with animations or videos) used in
RQ3 to investigate the content reported in issue reports. Our focus lies on comparing
the differences between visual issue reports and non-visual ones in order to shed light

22

https://github.com/microsoft/vscode/issues/99078
https://github.com/ballerina-platform/ballerina-lang/issues/30450

Understanding the Characteristics and the Role of Visual Issue Reports 23

on “For what bug are visuals used (BugType)?”. We now describe the manual coding
approach for identifying bug types.

Manual Coding of Bug Types. A group of studies has established the coding
schema of bug types (Catolino et al., 2019; Nayrolles and Hamou-Lhadj, 2018; Lal
and Sureka, 2012). Taking into account our study’s focus, we refer to the coding
schema proposed by (Catolino et al., 2019), since this schema targets the same social
coding platform GitHub and bug types are more fine-grained to be classified. The
coding schema consists of the following nine categories:

1. Configuration bug: refers to bugs related to building configuration files, often
caused by outdated or faulty external libraries or incorrect directory/file paths in
XML or manifest artifacts.

2. Network bug: refers to bugs related to connection or server problems, including
network issues, unexpected server shutdowns, or improper usage of communica-
tion protocols in the source code.

3. Databese-related bug: refers to bugs related to the connection between the main
application and a database, specifically issues with failed queries or connections.

4. GUI-related bug: refers to bugs occurring within the graphical user interface
(GUI) of an application, encompassing stylistic errors in screen layouts, element
colors, padding, text box appearance, buttons, as well as unexpected failures re-
sulting in unusual error messages.

5. Performance bug: refers to bugs reporting performance problems such as memory
overuse, energy leaks, and infinite loops.

6. Permission/deprecation issue: refers to bugs stemming from deprecated method
calls or APIs, as well as problems related to unused API permissions.

7. Security bug: refers to bugs related to vulnerabilities and security problems, in-
cluding the need to reload certain parameters and remove unused permissions that
could impact system reliability.

8. Program anomaly bug: refers to bugs introduced by developers during code en-
hancements, specifically concerning exceptions, return values, and unexpected
crashes resulting from logical issues in the program (excluding SQL statement
errors). Note that SQL statement issues are classified as database-related bugs.

9. Test code-related bug: refers to bugs appearing in test code, commonly report-
ing problems with running, fixing, or updating test cases, intermittent tests, or
difficulties in identifying localized bugs.

The first author and three students manually coded 741 visual issue reports into
the above nine categories. The titles, descriptions, comments, and commits of the
issue reports were relied upon to classify the types of bugs. To validate the com-
prehensive understanding of the coding schema among coders, four coders first in-
dependently classified 40 randomly sampled issue reports, returning a Kra score of
0.719. Encouraged by this satisfying agreement score, the remaining issue reports
were separated into four sets and the four coders manually classified each set.

Control Group. In addition, we construct a control group to fairly compare the
popularity difference in terms of bug types that are raised in issue reports with vi-
suals and those without visuals. To do so, we randomly selected 383 representative
samples, with a confidence level of 95% and a confidence interval of 5, from 102,087

23

24 Kuramoto et al.

GUl-related bug GUl-related bug

29.8% 39.0%

Performance bug
4.3%

2.9% Performance bug

279 Network bug 3'02‘; Configuration bug
0.8% (other bugs) £4% (othet bugs)

Configuration bug

59.6% 55.5%

Program anomaly bug Program anomaly bug

(a) Bug types of issue reports with images. (b) Bug types of issue reports with anima-
tions/videos.

Configuration bug
GUlI-related bug

12.8%

19.6%

Performance bug

2.6% Network bug
1.39 Database-related bug
1.8% (other bugs)

58.6%

Program anomaly bug

(c) Bug types of non-visual issue reports.

Fig. 9 Distribution of bug types of each issue report kind. (a)“(other bugs)”: Database-related bug
(0.53%), and Test code-related bug (0.27%), (b)*“(other bugs)”: Network bug (0.83%), Database-related
bug (0.28%), and Test-code-related bug (0.28%), (c)“(other bugs)”: Permission/deprecation bug (1.3%)
and Test code-related bug (0.44%).

issue reports without visuals. Since the measured agreement was already sufficient,
the first author then manually classified these representative samples.

After we classified the bug types of sampled issue reports with visuals and the
control group, we further analyzed the effect of these visuals in fixing different bug
types. To reduce the threat caused by the small amount of data, we only focus on
the relatively frequent issue types that are reported in both visual and non-visual
ones, with the number of identified instances being greater than 10 (3%). We se-
lected two interesting metrics from the Discussion and Fix dimensions as described
in Section 4.1, namely FirstCommentTime and ClosedTime. Similarly, to measure the
statistical significance and the effect size, we adopt the Kruskal Wallis test, the Steel
test, and Cliff’s 6.

6.2 Results

Visual issue reports more commonly describe GUI-related bugs, whereas configura-
tion bugs are reported less frequently compared to non-visual issue reports. Figure 9

24

Understanding the Characteristics and the Role of Visual Issue Reports 25

B Ouput
W Userlnterface
Program anomaly bug Img [| 1] Logs
M Diagram
Anm/Vid Il W Configuration
B Performance
B Code
GUI-related bug Img]
Anm/Vid ||
Performance bug Img L |
Anm/Vid I
Configuration bug Img] L
Anm/Vid I
20% 40% 60% 80% 100%

(a) Contents of visuals in each type of bug report.

Introducing problem in report

Help identifying the issue cause
llustrating expected behavior
Providing instructions or workarounds
Social purposes

Program anomaly bug Img

Anm/Vid

GUlI-related bug Img
Anm/Vid

Performance bug Img

Anm/Vid

Configuration bug Img
Anm/Vid

20% 40% 60% 80% 100%
(b) Purposes of visuals in each type of bug report.

Fig. 10 Relation between visual types/purposes and the bug type.

shows the distribution of bug types in the three kinds of issue reports. Firstly, we ob-
serve that the most frequently reported issues, irrespective of the type of issue report,
are related to program anomaly bugs (59.6%, 55.5%, and 58.6% being identified
for images, animations/videos, and non-visual reports, separately). Second, the pie
charts show that the proportion of GUI-related issues is much higher in the reports
with images or animations/videos (29.8% and 39.0%, respectively) when compared
to non-visual reports (12.8%). Third, we find that the configuration bug is rarely re-
ported with images or animations/videos, only with 2.9% and 1.1% of issue reports
being identified, while the configuration bug ranked as the second common kind is
frequently reported in the non-visual reports, accounting for 19.6%.

The major kinds of visual contents are likely to vary depending on the bug types,
while introducing problems in the report is the most frequent purpose regardless of
bug types. We further explore the relationship between the characteristics of visuals

25

26 Kuramoto et al.

issueType

[None
Program anomaly bug 3 Img
B Anm/Vid
Crlemiedtuo @
Performance bug El—4

0 5 10 15 20 25
days until the first comment is recieved.

(a) FirstCommentTime.

Program anomaly bug @
Gleatedbus E‘
issueType
Performance bug =1 None
[Img

B Anm/Vid

0 50 100 150 200 250 300 350 400
days until the issue is closed.

(b) ClosedTime.

Fig. 11 Metrics FirstCommentTime and ClosedTime for the frequent bug types across three kinds of issue
reports.

(their contents and purposes) and the bug types. Figure 10 (a) and Figure 10 (b)
present the related results. In terms of the relationship between visual contents and
bug types, as shown in Figure 10 (a), we observe that program anomaly, GUI-related,
and performance bugs tend to be embedded with dominant kinds of visual contents,
respectively. Specifically, Output, User Interface, Performance are commonly used
to report the three aforementioned bug types separately. Their frequencies for either
images or animations/videos are all over 50%. However, for configuration bugs, no
specific kind of visual content dominance is observed. In terms of the relationship
between visual purposes and bug types, as shown in Figure 10 (b), the results indicate
that regardless of the bug types, the most common purpose is to introduce problems in
reports. At the same time, the visual used to help identify the issue cause is relatively
more frequent when reporting configuration bugs.

26

Understanding the Characteristics and the Role of Visual Issue Reports 27

Table 6 The statistical results of the metrics FirstCommentTime and ClosedTime.

Metrics BugType Pairs K-W’s p-value p-value Cliff’s &

Img vs. None 0 .524 (large)
Anm/Vid vs. None o 207 (small)
Img vs. None * .601 (large)
Anm/Vid vs. None o .386 (medium)
Img vs. None 0 o .198 (small)
0

Program anomaly bug
o

FirstCommentTime GUI related bug

Per formance bug

Anm/Vid vs. None .348 (medium)
) Img vs. None 0 0 .057 (negligible)
Program anomaly bug Anm/Vid vs. None 0 .004 (negligible)
. Img vs. None 0 o 133 (negligible)
ClosedTime GUI related bug 4 1vid vs. None o 012 (negligible)
, i Img vs. None ° ¢ .042 (negligible)
Per formance bug Anm/Vid vs. None o 227 (small)

0 p>0.05; * p<0.05; ** p<0.01;

Bug-fixing process may differ from the bug types across issue report kinds. Fig-
ure 11 presents the results of the metrics FirstCommentTime and ClosedTime for the
relatively frequent bug types (Program anomaly bug, GUI-related bug, and Perfor-
mance bug) and Table 6 shows their statistical results. We observe that issue reports
with images or animations/videos that raise GUI-related and performance bugs are
likely to receive the first comment within a shorter period, while reports with images
that raise program anomaly bugs tend to take a longer time. Although no significant
difference is drawn, the effect size analysis suggests that there indeed exists a rela-
tionship, varying from small to large size. One possible reason is that our sample size
is not large enough (Sullivan and Feinn, 2012). In terms of the ClosedTime, from the
figure, we notice that the taken time for issue reports with images is constantly shorter
across the three studied bug types but there is no significant difference and magnitude
effect size. On the other side, when raising performance bugs, issue reports with an-
imations/videos significantly take a longer time to be closed, with a small effect size
being examined.

Results show that visuals are more frequently used to report GUI-related bugs
(2-3 times) but less commonly to report configuration bugs compared to non-
visual issue reports. It relatively takes less time for issue reports with images
that report GUI-related and performance bugs to receive the first comment.

7 Discussion

In this section, we discuss the main findings of our empirical results and provide
potential future works.

Potential to make a good issue report. Due to their intuitive nature, it is not
surprising that visuals have become a popular choice for electronic developer com-
munication, such as Q&A forums and issue tracker systems (Nayebi, 2020; Agrawal
et al., 2022; Wang et al., 2023). Our large-scale empirical study on 34 projects fur-

27

28 Kuramoto et al.

ther confirmed this upward trend for both images and animations/videos, as shown
in Figure 2. Compared to the animations/videos, images are more frequently em-
bedded with issue reports, almost reaching one-fourth of the reports in the past two
years. Possible reasons for this could be that the GitHub feature for uploading videos
was newly launched in 2021, and uploading images requires less effort. Prior works
demonstrated that several important elements (e.g., examples, user contents, and re-
producing steps) are largely missing in the issue reports (Soltani et al., 2020). The
increasing use of visuals to report issues indicates that developers are becoming more
aware of the information needed to facilitate issue resolution tasks. Furthermore, the
results of our manual analysis of visual characteristics in RQ3 indicate that visuals
are frequently utilized to depict outputs and user interfaces (41.3% and 20.8% for
images, and 62.0% and 25.0% for animations/videos). This result suggests that de-
velopers tend to effectively leverage visuals to convey information that is difficult to
describe in text-based content. In particular, the animations/videos support a dynamic
reproduction of the issues, which can further enhance the context comprehension to
introduce problem and help to identify the cause (83.7% and 11.0% being identi-
fied, respectively, in Figure 7). These empirical findings imply that visuals may aid
to construct a good issue report with richer information beyond the text.

On the other hand, we found some cases where visuals may bring over or unnec-
essary information. For instance, in this report,5 three images are attached, however,
the last two images describe the similar contents as the first image and could be re-
placed by the text in the description. Hence, to make a good issue report, we also
suggest that reporters judiciously use visuals to supplement the information when re-
porting issues. Another direction for researchers is to analyze the extent to which the
information presented in visuals aligns with the textual description.

Association between the visual issue reports and the bug reporting. Our RQ1
results show that compared to issue reports that do not have any visuals, the ones that
contain images or animations/videos significantly have a higher probability of raising
bugs, 44.6% and 77.1% being identified (as shown in Table 2). This finding suggests
that developers tend to attach visuals to describe bug-related topics. Complementar-
ily, our RQ4 results show that visuals are more frequent to be attached to the program
anomaly and GUI-related bugs (as shown in Figure 9) but less commonly attached
to configuration bugs. Based on these findings, we suggest that developers should
prioritize visual issue reports, especially those related to animations/videos. Addi-
tionally, GitHub maintainers could consider introducing a new issue label to indicate
the inclusion of visuals, as these reports are more likely to be associated with bugs.

Role of visuals in the issue resolution process. Our empirical results (RQ2) sta-
tistically confirm that compared to issue reports that do not contain visuals, visual
reports are likely to shorten the issue discussion process. For instance, it significantly
takes a relatively shorter time for visual issue reports to receive the first comment
(FirstCommentTime) and complete the conversation (LastCommentTime) as shown
in Table 4. This finding suggests that visuals could attract the developers’ attention
and initiate the discussion earlier. However, in terms of the closed time, we do not
observe a substantial significant difference from both results shown in Figure 5 and

5 https://github.com/magento/magento2/issues/34476

28

https://github.com/magento/magento2/issues/34476

Understanding the Characteristics and the Role of Visual Issue Reports 29

Figure 11. Therefore, developers should not expect that attaching visuals to the is-
sue reports will result in faster resolution times. One potential reason is that visuals
may not be effective during all phases of the bug-fixing process, such as the bug lo-
calization phase. The next logical step for researchers would take into account other
confounding factors and see the role of visuals in the statistical models. Another pos-
sible step is to conduct a developer survey to understand how they perceive the impact
of visuals on bug fixing. In addition, we overlook the visuals in the issue discussions,
hence, in future work, we will further examine their effect and characteristics.

Usage of the characteristics of visuals. We suggest researchers utilize the tax-
onomy of characteristics of visuals to further understand the features of issue reports
(such as the reporters’ experience). For example, as shown in Figure 10, we shed
light on the relationship between the characteristics of the visuals and the bug types.
The results offer potential recommendations for the content of visuals that are com-
monly shared in specific bug reports. Another possible future direction for researchers
includes a classifier proposal that can automatically classify the kinds of visual con-
tents and their purposes, which could support the larger-scale study which relies on
statistical models to examine the effect of visuals and would also be beneficial for
developing automated tools to sort out the priority between visual issue reports.

We outline the implications, challenges and future directions for practitioners and
researchers from our discussions below.
Implications:

Developers tend to become more aware of the information needed to facilitate
issue resolution tasks.

Visuals have the potential to construct a good issue report with richer information
beyond the text.

Reporters should use visuals judiciously to supplement information when report-
ing issues, in order to avoid providing excessive or unnecessary information.
GitHub maintainers/Developers should prioritize visual issue reports as they are
highly associated with bug reporting, especially those related to animations/videos.
Visuals may initiate the discussion earlier, but developers should not expect that
attaching visuals will result in faster resolution times.

Challenges/Future directions:

In future work, we plan to analyze the extent to which the information presented
in visuals aligns with the textual description.

Researchers would take into account other confounding factors and examine the
role of visuals in the issue resolution process.

A developer survey would be beneficial to understand how they perceive the im-
pact of visuals on bug fixing.

To examine the role of visuals and their characteristics in the issue discussion
would be the next step.

A classifier could be developed to classify the characteristics of visuals, in order
to support larger-scale studies and automated tasks.

29

30 Kuramoto et al.

8 Threats to Validity

In this section, we now discuss the threats to the validity of our empirical study.

External Validity is concerning our ability to generalize based on our results. We
only conduct an empirical study on 34 large and active GitHub repositories (i.e., con-
taining more than 10,000 issue reports) to investigate the role of the visual contents
on issue reports. However, these repositories demonstrate diversity in terms of lan-
guages and domains. Specifically, they cover over twelve languages including the
popular ones (e.g., Java, Python, C/C++, JavaScript, and Go), and five domains (i.e.,
application software, software tools, libraries and frameworks, system software, and
documentation) based on the work of Borges et al. (2016). Furthermore, we believe
that the large-scale size of the studied issue reports (i.e., 481,603) does provide valu-
able insights into the role of the visual issue reports. Nonetheless, it is important to ac-
knowledge that these observations may not be applicable to smaller or medium-sized
GitHub repositories. Conducting replication studies in the future can help enhance
the validity of the generalizations that can be made.

Construct Validity denotes the degree to which our measurements capture what we
aim to study. Three potential threats are concluded. The first threat could occur dur-
ing our data collection of visual issue reports. To identify the visuals, we rely on
a list of image file extension types (i.e., “png”, “PNG”, “jpg”, “JPG”, “jpeg”, and
“JPEG”) and a list of video file extension types (i.e., “gif”, “GIF”, “mp4”, “MP4”,
“mov”, “MOV”, “webm” and “WEBM?”). It is possible that some images or videos
may not be retrieved by any type in these lists. However, we are confident that we
cover the most commonly used file extension types. In addition, our work is limited
to focusing on the visuals that were attached to the descriptions of the issue reports.
We omitted those visuals in the issue comments, hence future work is encouraged
to systematically investigate their characteristics and their relationship with the bug
resolution process. The second threat exists in the measurement of bug rate in RQ1.
In this analysis, we rely on the tags to determine whether or not the issue report is
related to bugs. In our RQ1 analysis, we rely on the tags to determine whether or not
the issue report is related to bugs. Although we performed a sanity check to examine
the precision of this method similar to the work of (Li et al., 2023), there could be
issues incorrectly identified as non-bugs due to the liberal nature of GitHub tags. To
further mitigate the threat, we filtered out those issues that were not tagged and then
calculated the bug rates. Nonetheless, as an exploratory study, our results do shed
light on the practice of bug reporting between visual issue reports and non-visual is-
sue reports. The third threat is concerning the metric selection in RQ2 to analyze the
characteristic difference between visual issue reports and non-visual ones. We focus
on seven metrics from three dimensions, and we make sure that these metrics are
representative to be analyzed based on the literature review.

Internal Validity refers to the approximate truth about inferences regarding cause-
effect or causal relationships. Two main internal threats are summarized. The first

30

Understanding the Characteristics and the Role of Visual Issue Reports 31

threat is concerning the choice of the statistical test selection in our quantitative anal-
ysis (RQ2 and RQ4). Different statistical tests may introduce the threat of the sig-
nificance measurement. However, we believe that the Steel test is an appropriate test
to fit our data (e.g., data does not follow normal distributions, and does not satisfy
homoscedasticity) and is broadly adopted in the prior work. The second threat exists
in our qualitative analysis (RQ3 and RQ4), where we manually classified the con-
tents and purposes of visuals and the bug types of issue reports. We rely on manually
coded data, which may be miscoded due to the subjective nature of understanding the
coding schema. To relieve this threat, we properly apply an open coding approach by
three authors, and disagreements are solved until these authors reach a consensus.

9 Related Work

In this section, we compare and contrast our study to prior research in two dimen-
sions: first, we consider the work that analyzes bug comprehension and its effect on
fixing time; then, we introduce the literature that is related to non-textual information
sharing in software development.

9.1 Bug Comprehension & Fixing Time

Fixing bugs is a crucial activity in the software development process and mainte-
nance, with 80% of the total cost of a software project being spent (Planning, 2002;
Weiss et al., 2007). However, bug reports often lack the necessary information for
developers to reproduce bugs (Joorabchi et al., 2014). Prior researchers have widely
studied the association between technical and non-technical factors and fixing time,
including the role of the significant information elements. Soltani et al. (2020) found
that crash reproducing steps, stack traces, fix suggestions, and user contents, have a
statistically significant impact on bug resolution time. Through a study on 10 large-
scale open-source systems, Chen et al. (2021) stated that reporters may not attach
accurate or sufficient logs, which extended the bug resolution time. Li et al. (2023)
empirically studied the bug report templates on GitHub and reported that bug reports
with templates have shorter resolution times and higher comment coverage. At the
same time, a plethora of automated models to aid bug comprehension and shorten the
fixing time have been proposed. To name a few, Moran et al. (2015) introduced assis-
tant systems FUSION for reporters, which auto-complete reproduction steps based
on user-provided information and information extracted via a combination of static
and dynamic program analyses. Song et al. (2022) proposed an interactive GUI tool
for easy reporting of bugs, allowing users to easily report reproduction steps by se-
lecting candidate screenshots of the application. Fazzini et al. (2023) introduced a
system called EBug, and EBug is capable of automatically suggesting potential future
steps using predictive models trained on realistic app usage. To facilitate the needs
of bug reproduction work from the developer viewpoint, GitHub allows developers to
submit issue reports embedded with visuals (especially since 2021, video sharing is
permitted). Our study takes a first step towards empirically understanding the usage
of visuals and highlights the role of visuals plays in supporting bug comprehension.

31

32 Kuramoto et al.

9.2 Non-Textual Information Sharing in Software Development

During contemporary software development, developers nowadays commonly share
non-textual information (e.g., links, code snippets, and visuals) to encourage knowl-
edge exchange, and support their collaboration and communication needs. For in-
stance, the value of link sharing has been widely explored. Ye et al. (2017) used the
URLSs shared in Stack Overflow to generate a knowledge network, in order to enable
more effective knowledge sharing during the community. Hata et al. (2019) investi-
gated the characteristics of 9.6 million links in source code comments and the results
show that links are prevalent, frequently referring to software homepages and spec-
ifications. During code review, Wang et al. (2021) observed seven intentions behind
sharing links, and their developer survey results suggested that link sharing is more
useful than plain text during code review. Regarding the usage of code snippets, Fu
et al. (2022) observed that code implementation is the most common purpose and
highlighted the role in code reviews.

In addition to the images and code snippets, developers are increasingly making
use of visuals (i.e., screenshots and screen recordings) as a means to report issues. For
instance, Nayebi (2020) reported that there was a steady increase in sharing images
over the past five years in Stack Overflow and Bugzilla. Their developer survey sug-
gested that shared images are meaningful and provide complementary information.
Johnson et al. (2022) reported that bug reports with cosmetic and navigation failures
have a higher proportion of cases in which the information is reported using image-
based modalities as compared to output and crash failures. Agrawal et al. (2022)
found that more than a quarter of the issues in the Jupyter Notebook project included
visual content. Apart from the above empirical studies that aim to understand the pop-
ularity and the characteristics of the issues, a group of studies has explored the usage
of visuals in facilitating a developer’s automatic task. Wang et al. (2019) proposed
SETU which combines information from the screenshots and the textual descriptions
to detect duplicate crowd-testing reports, outperforming the existing state-of-the-art.
Cooper et al. (2021) introduced TANGO to aid developers in determining whether
video-based bug reports depict the same bug, by leveraging tailored computer vision
techniques, optical character recognition, and text retrieval. Feng et al. (2023) devel-
oped GIFdroid and CAPdroid, which are capable of extracting user actions (i.e., steps
to reproduce) from submitted videos. Our study expands upon the work of Nayebi
(2020) and Agrawal et al. (2022), we conducted a large-scale empirical study on 34
GitHub repositories to statistically analyze the characteristic difference between vi-
sual issue reports and non-visual reports. For instance, one interesting result shows
that visual issue reports are more likely to be associated with bugs.

10 Conclusion

GitHub Issue includes features for users to embed visuals (i.e., images and videos) to
facilitate developers’ bug-reproduction tasks. To address the ultimate research ques-
tion “What makes a good issue report?”, we conducted an empirical study using 34
active GitHub repositories to quantitatively analyze the difference between visual is-

32

Understanding the Characteristics and the Role of Visual Issue Reports 33

sue reports and non-visual ones, and qualitatively analyze the characteristics of the
visuals and their usage in raising bugs. The quantitative analysis importantly shows
that visual issue reports are more likely to describe the bug-related issue (almost 1.5—
2.5 times). Seven visual content kinds and five purpose kinds are classified from our
qualitative analysis. The results show that visuals are frequently used to describe the
program behavior and the user interface, with the primary purpose of introducing
problems in reports. Furthermore, visuals are commonly used in raising GUI-related
bugs while less frequently used in raising configuration bugs (the second common
bug type in non-visual reports). Our study highlights the role that visuals play in
GitHub issues, the next step is to further investigate the causality relationship between
visuals and closed time by considering various confounding factors and to understand
how developers perceive the impact of visuals on bug fixing through a survey. Other
directions also include studying the usage of visuals that are attached in the issue
conversation process, and the extension of the usage of visuals for reproducing bugs
to downstream tasks.

Acknowledgment

This research was partially supported by JSPS KAKENHI Japan (Grant Numbers:
JP21HO04877, JP21K 17725, JP22K 17874, JP22K18630, JP23K16864) and Yasutaka
Kamei is supported by Inamori Research Institute for Science, Kyoto, Japan (InaRIS
Fellowship).

Data Availability Statements

The replication package that supports the findings of this study is available publicly.®

Declarations
Funding and/or Conflicts of interests/Competing interests

All authors certify that they have no affiliations with or involvement in any organiza-
tion or entity with any financial interest or non-financial interest in the subject matter
or materials discussed in this manuscript.

References

Agrawal V, Lin YH, Cheng J (2022) Understanding the characteristics of visual con-
tents in open source issue discussions: A case study of jupyter notebook. In: Pro-
ceedings of the the 26th International Conference on Evaluation and Assessment
in Software Engineering 2022, pp 249-254

6 https://doi.org/10.5281/zenodo. 10565699

33

https://doi.org/10.5281/zenodo.10565699

34 Kuramoto et al.

Bauer MW (2007) Content analysis. an introduction to its methodology — by klaus
krippendorff from words to numbers. narrative, data and social science — by roberto
franzosi. The British Journal of Sociology 58(2):329-331, DOI https://doi.org/10.
1111/5.1468-4446.2007.00153_10.x

Bettenburg N, Just S, Schroter A, Weifl C, Premraj R, Zimmermann T (2007) Qual-
ity of bug reports in eclipse. In: Proceedings of the 2014 Workshop on Eclipse
Technology eXchange, pp 21-25

Blincoe K, Sheoran J, Goggins S, Petakovic E, Damian D (2016) Understanding the
popular users: Following, affiliation influence and leadership on github. Informa-
tion and Software Technology 70:30-39

Borges H, Hora A, Valente MT (2016) Understanding the factors that impact the pop-
ularity of github repositories. In: 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp 334-344

Breu S, Premraj R, Sillito J, Zimmermann T (2010) Information needs in bug reports:
improving cooperation between developers and users. In: Proceedings of the 14th
Conference on Computer Supported Cooperative Work, pp 301-310

Casella G, Berger RL (2021) Statistical inference. Cengage Learning

Catolino G, Palomba F, Zaidman A, Ferrucci F (2019) Not all bugs are the same:
Understanding, characterizing, and classifying bug types. Journal of Systems and
Software 152:165-181

Chen AR, Chen THP, Wang S (2021) Demystifying the challenges and benefits of an-
alyzing user-reported logs in bug reports. Empirical Software Engineering 26(1):1-
30

Cliff N (1993) Dominance statistics: Ordinal analyses to answer ordinal questions.
Psychological Bulletin 114:494-509

Cohen J (2013) Statistical power analysis for the behavioral sciences. Routledge

Cooper N, Bernal-Cardenas C, Chaparro O, Moran K, Poshyvanyk D (2021) It takes
two to TANGO: combining visual and textual information for detecting duplicate
video-based bug reports. In: Proceedings of the 43rd International Conference on
Software Engineering, pp 957-969

Dabic O, Aghajani E, Bavota G (2021) Sampling projects in github for MSR studies.
In: Proceedings of the 18th International Conference on Mining Software Reposi-
tories, pp 560-564

Dey T, Mousavi S, Ponce E, Fry T, Vasilescu B, Filippova A, Mockus A (2020)
Detecting and characterizing bots that commit code. In: Proceedings of the 17th
international conference on mining software repositories, pp 209-219

Eisenhardt KM (1989) Building theories from case study research. Academy of man-
agement review

Fazzini M, Moran K, Bernal-Cédrdenas C, Wendland T, Orso A, Poshyvanyk D (2023)
Enhancing mobile app bug reporting via real-time understanding of reproduction
steps. IEEE Trans Softw Eng 49(3):1246-1272

Feng S, Xie M, Xue Y, Chen C (2023) Read it, don’t watch it: Captioning bug record-
ings automatically

Fu L, Liang P, Zhang B (2022) Understanding code snippets in code reviews: A
preliminary study of the openstack community. In: Proceedings of the IEEE/ACM
30th International Conference on Program Comprehension (ICPC), pp 152-156

34

Understanding the Characteristics and the Role of Visual Issue Reports 35

Giger E, Pinzger M, Gall H (2010) Predicting the fix time of bugs. In: Proceedings
of the 2nd International Workshop on Recommendation Systems for Software En-
gineering, pp 52-56

Golzadeh M, Decan A, Legay D, Mens T (2021) A ground-truth dataset and clas-
sification model for detecting bots in github issue and pr comments. Journal of
Systems and Software 175:110911

Golzadeh M, Decan A, Chidambaram N (2022) On the accuracy of bot detection
techniques. In: Proceedings of the IEEE/ACM 4th International Workshop on Bots
in Software Engineering (BotSE), pp 1-5

Guo PJ, Zimmermann T, Nagappan N, Murphy B (2010) Characterizing and predict-
ing which bugs get fixed: an empirical study of microsoft windows. In: Proceedings
of the 32nd International Conference on Software Engineering, pp 495-504

Hata H, Treude C, Kula RG, Ishio T (2019) 9.6 Million Links in Source Code Com-
ments: Purpose, Evolution, and Decay. In: Proceedings of the 41st International
Conference on Software Engineering, p 1211-1221

He R, He H, Zhang Y, Zhou M (2023) Automating dependency updates in practice:
An exploratory study on github dependabot. IEEE Transactions on Software Engi-
neering

Herzig K, Just S, Zeller A (2013) It’s not a bug, it’s a feature: how misclassification
impacts bug prediction. In: Proceedings of the 35th International Conference on
Software Engineering, pp 392401

Johnson J, Mahmud J, Wendland T, Moran K, Rubin J, Fazzini M (2022) An empiri-
cal investigation into the reproduction of bug reports for android apps. In: Proceed-
ings of the IEEE 29th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pp 321-322

Joorabchi ME, MirzaAghaei M, Mesbah A (2014) Works for me! characterizing non-
reproducible bug reports. In: Proceedings of the 11th Working Conference on Min-
ing Software Repositories, pp 62-71

Krejcie RV, Morgan DW (1970) Determining sample size for research activities. Ed-
ucational and Psychological Measurement 30(3):607-610

Krippendorff K (2019) Content Analysis: An Introduction to Its Methodology. SAGE
Publications, Inc.

Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. Jour-
nal of the American Statistical Association 47(260):583-621

Kuramoto H, Kondo M, Kashiwa Y, Ishimoto Y, Shindo K, Kamei Y, Ubayashi
N (2022) Do visual issue reports help developers fix bugs?:-a preliminary study
of using videos and images to report issues on github-. In: Proceedings of the
IEEE/ACM 30th International Conference on Program Comprehension, IEEE, pp
511-515

Lal S, Sureka A (2012) Comparison of seven bug report types: A case-study of google
chrome browser project. In: Proceedings of the 19th Asia-Pacific Software Engi-
neering Conference, APSEC, vol 1, pp 517-526

Li H, Yan M, Sun W, Liu X, Wu Y (2023) A first look at bug report templates on
github. Journal of Systems and Software 202:111709

Moran K, Linares-Vasquez M, Bernal-Cérdenas C, Poshyvanyk D (2015) Auto-
completing bug reports for android applications. In: Proceedings of the 10th Joint

35

36 Kuramoto et al.

Meeting on Foundations of Software Engineering, p 673-686

Nayebi M (2020) Eye of the mind: Image processing for social coding. In: Proceed-
ings of the ACM/IEEE 42nd International Conference on Software Engineering:
New Ideas and Emerging Results, Association for Computing Machinery, pp 49—
52

Nayrolles M, Hamou-Lhadj A (2018) Towards a classification of bugs to facilitate
software maintainability tasks. In: Proceedings of the 1st International Workshop
on Software Qualities and Their Dependencies, p 25-32

Ohira M, Hassan AE, Osawa N, Matsumoto K (2012) The impact of bug management
patterns on bug fixing: A case study of eclipse projects. In: Proceedings of the 28th
International Conference on Software Maintenance, pp 264-273

Panjer LD (2007) Predicting eclipse bug lifetimes. In: Proceedings of the 4th Inter-
national Workshop on Mining Software Repositories, p 29

Pearson K (1900) X. on the criterion that a given system of deviations from the prob-
able in the case of a correlated system of variables is such that it can be reason-
ably supposed to have arisen from random sampling. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science 50(302):157-175

Planning S (2002) The economic impacts of inadequate infrastructure for software
testing. National Institute of Standards and Technology p 1

Potter MC, Faulconer BA (1975) Time to understand pictures and words. Nature
253(5491):437-438

Romano J, Kromrey JD, Coraggio J, Skowronek J, Devine L (2006) Exploring meth-
ods for evaluating group differences on the nsse and other surveys: Are the t-test
and cohen’s d indices the most appropriate choices? In: Proceedings of the Annual
Meeting of the Southern Association for Institutional Research, pp 1-51

Saadat S, Colmenares N, Sukthankar G (2021) Do bots modify the workflow of
github teams? In: Proceedings of the IEEE/ACM Third International Workshop
on Bots in Software Engineering (BotSE), IEEE, pp 1-5

Soltani M, Hermans F, Bick T (2020) The significance of bug report elements. Em-
pirical Software Engineering 25(6):5255-5294

Song Y, Mahmud J, Zhou Y, Chaparro O, Moran K, Marcus A, Poshyvanyk D (2022)
Toward interactive bug reporting for (android app) end-users. In: Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, Association for Computing Machin-
ery, p 344-356

Stemler S (2000) An overview of content analysis. Practical assessment, research,
and evaluation 7(1):17

Sullivan GM, Feinn R (2012) Using effect size—or why the p value is not enough.
Journal of graduate medical education 4(3):279-282

Taesiri MR, Macklon F, Bezemer CP (2022) Clip meets gamephysics: Towards bug
identification in gameplay videos using zero-shot transfer learning. arXiv preprint
arXiv:220311096

Wang D, Xiao T, Thongtanunam P, Kula RG, Matsumoto K (2021) Understanding
shared links and their intentions to meet information needs in modern code review.
Empir Softw Eng 26(5):96

36

Understanding the Characteristics and the Role of Visual Issue Reports 37

Wang D, Xiao T, Treude C, Kula RG, Hata H, Kamei Y (2023) Understanding the
role of images on stack overflow. arXiv preprint arXiv:230315684

Wang J, Li M, Wang S, Menzies T, Wang Q (2019) Images don’t lie: Duplicate
crowdtesting reports detection with screenshot information. Information and Soft-
ware Technology 110:139-155

Weiss C, Premraj R, Zimmermann T, Zeller A (2007) How long will it take to fix
this bug? In: Proceedings of the 4th International Workshop on Mining Software
Repositories (MSR’07: ICSE Workshops 2007), pp 1-1

Xiao T, Wang D, Mcintosh S, Hata H, Kula RG, Ishio T, Matsumoto K (2021) Charac-
terizing and mitigating self-admitted technical debt in build systems. IEEE Trans-
actions on Software Engineering

Ye D, Xing Z, Kapre N (2017) The structure and dynamics of knowledge network in
domain-specific q&a sites: A case study of stack overflow. Empirical Softw Engg
p 375406

Zanaty F, Hirao T, Mclntosh S, Thara A, Matsumoto K (2018) An empirical study
of design discussions in code review. In: Proceedings of the 12th ACM/IEEE In-
ternational Symposium on Empirical Software Engineering and Measurement, pp
1-10

Zhang F, Khomh F, Zou Y, Hassan AE (2012) An empirical study on factors impact-
ing bug fixing time. In: Proceedings of the 19th Working Conference on Reverse
Engineering, pp 225-234

Zimmermann T, Premraj R, Bettenburg N, Just S, Schroter A, Weiss C (2010) What
makes a good bug report? IEEE Transactions on Software Engineering 36(5):618—
643

Zimmermann T, Nagappan N, Guo PJ, Murphy B (2012) Characterizing and predict-
ing which bugs get reopened. In: Proceedngs of the 34th International Conference
on Software Engineering, pp 1074—1083

Zou W, Xia X, Zhang W, Chen Z, Lo D (2015) An empirical study of bug fixing rate.
In: Proceedngs of the 39th Annual Computer Software and Applications Confer-
ence, pp 254-263

37

	1 Introduction
	2 Dataset Preparation
	3 RQ1: To what extent are visual issue reports used for reporting bugs?
	4 RQ2: What is the relationship between visuals and the bug-fixing process?
	5 RQ3: What are the contents and purposes of visuals used in the issue reports?
	6 RQ4: What bug types are raised in visual issue reports?
	7 Discussion
	8 Threats to Validity
	9 Related Work
	10 Conclusion

