
TraceJIT: Evaluating the Impact of Behavioral Code
Change on Just-In-Time Defect Prediction

Issei Morita∗, Yutaro Kashiwa†, Masanari Kondo∗, Jeongju Sohn‡,
Shane McIntosh§, Yasutaka Kamei∗, Naoyasu Ubayashi∗,

∗Kyushu University, Japan — †Nara Institute of Science and Technology, Japan
‡University of Luxembourg, Luxembourg — §University of Waterloo, Canada

Email: morita@posl.ait.kyushu-u.ac.jp, yutaro.kashiwa@is.naist.jp, kondo@ait.kyushu-u.ac.jp, jeongju.sohn@uni.lu
shane.mcintosh@uwaterloo.ca, kamei@ait.kyushu-u.ac.jp, ubayashi@ait.kyushu-u.ac.jp

Abstract—Just-In-Time (JIT) defect prediction strives to model
changes that induce future fixes so that they can be predicted or
better understood to inform development practices. Prior work
demonstrates that the majority of the predictive/explanatory
power of JIT models derives from the size of a change (i.e.,
larger changes tend to be defect-prone); however, in practice,
a misguided change to even a single line of code can lead to
defects. While it is clearly the case that larger changes are
more likely to alter the product behavior, even small changes
are capable of doing this, and when they do, they pose a risk
that teams should note. However, to the best of our knowledge,
JIT defect prediction models are yet to incorporate features that
characterize the change in product behavior when modelling risk.

This paper is the first to explore the impact of behavioral code
change on JIT prediction. Specifically, we propose seven dynamic
features that capture the difference in product behavior before
and after applying a change. These features are computed using
trace logs that are collected during invocations of test suites.
Using these logs, we identify which lines of code started/stopped
being exercised after a change. We evaluate these features by
conducting an empirical study of two large and thriving open-
source projects. We observe that, compared to baseline models
that use traditional features, adding our proposed set of behavior
features leads to improvements of up to 5.9% of ROC-AUC,
44.8% of precision, and 14.1% of PR-AUC. This paper not
only demonstrates the importance of behavioral features for JIT
defect prediction, but also lays the foundation for future work on
behavioral features in other software engineering contexts, such
as build outcome prediction and code reviewer recommendation.

Index Terms—JIT defect prediction, dynamic features

I. INTRODUCTION

Since even a single defect may significantly harm an orga-
nization reputationally, economically, or otherwise, develop-
ers devote considerable time to Software Quality Assurance
(SQA). To efficiently allocate SQA resources to the source
code that is likely to be defect prone, defect prediction has
been studied for decades [1]–[3]. To make recommendations in
a change-oriented development style, Just-In-Time (JIT) defect
prediction approaches have been proposed [4], [5].

Various sets of features that characterize changes and pre-
dictive approaches have been applied to JIT defect prediction;
however, recent work [6] demonstrates that a naı̈ve size-based
ranking model can outperform even the state-of-the-art JIT

models. Even in the original JIT defect prediction studies, the
top contributing feature in the model fits was often the size of
the change [4], [7]. While useful, it is somewhat superficial
that larger changes are more likely to be defect-prone because
larger changes modify more lines, which creates more “surface
area” for future defect-fixing changes to implicate them.

On the other hand, small changes may also induce bugs.
For example, Karampatsis et al. [8] reported that even a
single line often leads to defects. We conjecture that the
riskiness of both large and small changes can be explained
by their impact on the behavior of the underlying software
product. By their nature, large changes change plenty of
code, which creates several opportunities to alter the behavior
of the software product; however, even small changes can
alter product behavior. It is these (unexpected) changes in
behavior that may introduce defects. Indeed, this idea that
small changes may introduce defects is at the core of mutation
testing [9], which performs small changes to the code (e.g.,
negating boolean expressions) to simulate defective changes
to the codebase. Moreover, the popular notion of mining for
“SStuBs” [8], [10], [11], i.e., simple stupid bugs that appear
on a single statement and the corresponding fix is within that
statement, further suggests that small changes account for a
considerable proportion of defect-fixing activity.

These kinds of unexpected behavior changes are typically
uncovered during unit testing. However, unit testing tends to
focus on inputs and corresponding outputs without paying
attention to which lines are exercised. For example, Fraser
et al. [12] develop EvoSuite to automatically generate test
cases. While EvoSuite significantly increases test coverage,
it is reported that many real defects are still missed even by
the augmented test suites [13].

This paper proposes TraceJIT—a JIT defect prediction
model that includes features that characterize the behavioral
impact of changes. More specifically, the TraceJIT ap-
proach leverages trace logs that are produced during test
execution using dynamic software analysis. These trace logs
are then analyzed to compute dynamic behavior features that
characterize the change in terms of behavior. The intuition of
these behavioral features is that more substantial behavioral

changes are likely to be defect-prone. In other words, the
prediction model would monitor for abnormal behavior in a
similar way that breakpoint debugging does.

To evaluate TraceJIT, we conduct an empirical study
of two large and thriving open-source systems. We compare
TraceJIT with the state-of-the-art JIT defect prediction
model of Sohn et al. [5] in the context of these studied systems.
We observe that TraceJIT outperforms the previous state of
the art, with improvements of 1.3% in terms of ROC-AUC and
23.6% in terms of Precision.

The results of our study demonstrate the importance of
features that characterize the behavioral impact of changes
in the context of JIT defect prediction. However, we believe
that this paper also lays the foundation for future work that
applies these behavioral features to other change-based predic-
tion settings in software engineering, such as build outcome
prediction [14] and code reviewer recommendation [15].

II. PRELIMINARIES

We first describe both conventional and state-of-the-art fea-
tures for defect prediction, as well as their limitations. We then
introduce features used to capture the dynamic characteristics
of defect-inducing changes. Finally, we provide a motivating
example to showcase and differentiate our proposed (dynamic)
behavioral change features from existing features.

A. Related Work

Static Features for Defect Prediction. Defect prediction has
been a subject of study for several decades, resulting in the
proposal of various types of features [4], [5], [16]–[20]. For
example, Hassan [16] introduced a novel code complexity
metric feature by measuring the entropy of code changes.
The empirical evaluation with six software systems demon-
strated that the proposed feature outperformed traditional code
metrics as a predictor. Rahman and Devanbu [21] explored
the usefulness of diverse process metrics in comparison to
code metrics, investigating how and why they can be better.
Kamei et al. [4] categorized 14 change features from previous
research on JIT defect prediction into five dimensions of
source control repository data. The authors conducted a large-
scale empirical study on six open-source software (OSS)
projects and five commercial projects, examining the effective-
ness of various change features. Given a plethora of features
available, previous studies delved into their significance in
predicting defects [19], [22]. These investigations highlighted
the importance of size features, such as the number of added
lines, in the effectiveness of JIT defect prediction: the larger
the change, the greater the defect proneness.

Beyond leveraging static features derived from metadata
of code changes, previous studies have explored the use of
semantic features extracted from text data, such as source code,
through machine learning and text analysis techniques [2],
[23]–[31]. For instance, Kim et al. [24] employed a bag-of-
words model to extract features from change log messages;
the performance of the bag-of-words model was evaluated
on 12 OSS projects, achieving an accuracy of 78%. Hoang

et al. [31] utilized a convolutional neural network to derive
features from commit messages and code changes, result-
ing in the creation of a new model called DeepJIT. An
empirical study was conducted to evaluate the performance
of DeepJIT on two popular open-source software projects,
i.e., OpenStack and QT. The results showed that DeepJIT
achieved improvements of 9.51-13.69% in terms of ROC
AUC on OpenStack and 10.36-11.02% on QT. These semantic
features have demonstrated superior performance compared
to the traditional features. However, these semantic features
are often costly to generate, requiring abundant text data and
model training, and more importantly, handling small code
changes still remains a challenge. Inspired by prior research
on fault localization [32], Sohn et al. [5] leveraged the lexical
similarity between code and bug reports to enhance JIT defect
prediction. While our approach also draws inspiration from
fault localization, we rely on the differences in the execution
flows of current test suites made by code changes, whereas
the work of Sohn et al. uses textual similarity between bug
reports and code changes.
Dynamic Features for Defect Prediction. Although static

data, such as characteristics of the source code and change
sets, has been the primary source for deriving features for JIT
prediction, several previous studies have leveraged dynamic
information, such as test execution results, to extract new
features for prediction [33]–[36]. For instance, Herzig [34]
introduced new dynamic features that associate test execution
with defect proneness, such as the number of test failures when
the change is integrated. The experimental results on Windows
8 development demonstrated that these metrics outperformed
pre-release defect counts in predicting post-release defects.
Bowes et al. [33], in contrast, defined five features using
mutation testing, with four of them leveraging dynamically
produced mutant coverage measurements. They evaluated the
effectiveness of these new mutation testing-based features with
three large real-world systems and showed that the highest
prediction performance can be achieved when using both static
and dynamic data. Also, Ding et al. [37] demonstrated that
integrating execution traces into pre-trained large language
models can enhance the performance to detect vulnerabilities.

While these studies exploit to what extent the production
code still contains defects (i.e., how well-tested), our study
also uses tests but examines how different the current behavior
of the product is from the previous behavior.

B. Motivating Example

Figure 1 shows the behavior (i.e., trace logs) of two revi-
sions of code, i.e., before and after a change set has been
applied; the green-colored lines indicate the code executed
during tests. In the figure, line 34 has been changed from
i-- to i++. Despite only one line of code being modified,
this change causes many lines of the subsequent code to
start/stop being executed. For instance, the if condition on
line 35 evaluates to false after the change set has been
applied, and class C is invoked instead of class B.
Such a behavioral change should be discovered by a test

File Line Revision X-1 Revision X Modified Stoped being
excerised

started being
excerised

17 public class TestA{ public class TestA{ F F F
18 @Test @Test F F F
19 public void testMethodA1(){ public void testMethodA1(){ F F F
20 int expect = 9; int expect = 9; F F F
21 assertEquals(expect, A.methodA(4)); assertEquals(expect, A.methodA(4)); F F F
22 } } F F F
23 } } F F F
32 class A{ class A{ F F F
33 static int methodA(int i){ static int methodA(int i){ F F F
34 i-- T T F

i++ T F T
35 if(i<=4){ if(i<=4){ F F F
36 B b = new B(); B b = new B(); F T F
37 return b.methodB(i); return b.methodB(i); F T F
38 }else{ }else{ F F T
39 C c = new C(); C c = new C(); F F T
40 return c.methodC(i); } return c.methodC(i); } F F T
41 } } F F F
42 } } F F F
43 } } F F F
20 class B{ class B{ F F F
21 int methodB(int i){ int methodB(int i){ F F F
22 return i*i; return i*i; F T F
23 } } F F F
24 } } F F F
20 class C{ class C{ F F F
21 int methodC(int i){ int methodC(int i){ F F F
22 return 2*i-1; return 2*i-1; F F T
23 } } F F F
24 } } F F F

Te
st

A.
ja

va
A.

ja
va

B.
ja

va
C.

ja
va

Fig. 1: Behavior change after a small change.

suite; however, tests often prioritize examining the outputs
for each set of inputs, disregarding the coverage of lines.
While unexpected behavioral changes can be detected with a
robust set of tests in theory, it remains challenging due to the
practical constraints on SQA investments (e.g., testing time,
test maintenance costs) [38].

To aid developers in identifying changes that may contain
defects, various Just-In-Time (JIT) defect prediction methods
have been proposed. These prediction methods typically rely
on static features extracted from source code and its changes,
often associating commits with many changes as defect-
inducing [19], [22]. As a result, these approaches frequently
fail to detect unexpected dynamic behavioral changes made
by small modifications that lead to defects. To address this
issue, we introduce TraceJIT—a novel JIT defect prediction
approach that characterizes changes to the behavior of a
program. To achieve this, TraceJIT defines new dynamic
features that quantify differences in the execution statuses
of lines (e.g., the number of lines that started/stopped being
executed after the change). The intuition behind these features
is to detect changes that substantially impact the dynamic
behavior of code, which we suspect should be riskier than
other changes. In this study, we investigate the differences
between dynamic features and static features of source code
changes (RQ1) and assess whether dynamic features from
trace logs improve the traditional JIT models (RQ2).

III. TRACEJIT

This section introduces the concept of a spectrum-based
defect prediction model (TraceJIT).

A. Concept

TraceJIT monitors the behavior of the product, exploiting
trace logs. Figure 2 depicts the model-building procedure. The
steps of this process are documented as follows.

1) Test exercises. TraceJIT runs two versions of test
suites (i.e., a revision ci and the previous revision ci−1) to
compare the behavior of the products during test exercises
before and after a change.

2) Trace collection. During test exercises, TraceJIT ex-
ecutes a dynamic analysis tool to measure dynamic
features so that it can identify the behavior change (trace
diff). Dynamic analysis tools can record various runtime
information while programs are running. For example, the
tools can measure which lines of code are exercised, what
values are returned by each method, and what values are
assigned to each variable.

3) Build prediction model. TraceJIT detects abnormal
behavior changes before and after a change by analyzing
the collected trace diff. We extract numerical values from
the trace diff and define dynamic features. In addition, we
utilize traditional static features to construct TraceJIT.

We are the first to explore the dynamic/behavioral char-
acteristics of changes in terms of defect proneness. In line
with the previous finding that the size of changes is one
of the most effective features in JIT defect prediction, we
investigate the impact of the behavioral change size among
various dynamic change features. Specifically, we train a
JIT defect prediction model using supervised learning with
newly proposed behavioral change features, studying their
differences with existing features and their effectiveness in
defect prediction. Future studies will investigate more diverse
(dynamic) features of behavior changes.

Run tests

Run tests

Ci-1 Ci

-+

Repository
Check Diff

Measure

Check Diff

Static features

Dynamic features

Defect Prediction ModelTrace logsSnapshots

Diff files

Revision Revision

(1) (2)

(3)

Fig. 2: Overview of TraceJIT. It runs tests contained in two revisions (i.e., before and after a change). During testing,
TraceJIT runs a dynamic analysis tool and collects trace logs. Finally, TraceJIT measures the dynamic features by
checking diffs between two trace logs, and between diffs of trace logs and changes in source code.

B. Features

In this study, we prepare seven simple and new features ex-
tracted from trace logs, hereafter referred to as trace features.
In essence, the trace features in this study analyze which lines
of the production code are covered by test suites: a significant
change in the executed lines after applying a change may
indicate potential defects in the change.

Newly exercised or un-exercised lines could be intended and
thereby expected by developers. For example, when developers
add or drop a substantial number of lines of code, the
behavior of the product will likely change dynamically. At
the same time, the changes in covered lines may sometimes
be unforeseen. For instance, when a developer modifies a class,
the change can unexpectedly trigger the execution of another
class that underwent no changes, which is reported by several
change impact analysis studies [39], [40]. In this study, we
aim to differentiate the expected and the unexpected changes
when evaluating the behavior changes made by code changes.
Hence, we (i.e., TraceJIT) further consider which lines of
code are modified (i.e., source code changes) when defining
the trace features of behavior changes.

In this study, we consider two sets of changes: SC and DC.
SC represents static changes in source code, i.e., the modified
lines of source code in a change (commit). DC represents
(dynamic) changes in the product’s behavior, i.e., the lines
of source code where a test method started or stopped being
exercised after a change. DC is further split into two sets,
distinguishing those started (i.e., DCstart) and those stopped
to be executed (i.e., DCstop).

In the following, we present features measured at two differ-
ent levels of granularity (i.e., coarse-grained and fine-grained),
depending on the extent to which we differentiate dynamic
changes (DC), with an example illustrated in Figure 1. Coarse-
grained features do not distinguish whether the lines of source
code ceased or started to be exercised (i.e., DC), whereas fine-
grained features do (i.e., DCstart or DCstop).

Coarse-grained dynamic features are computed from the
number of traces that appeared or disappeared after a change.
These features are designed to determine if the changed traces
are directly intended by the source code changes (i.e., whether
the changed traces are on the changed lines of the source
code or not (indirect)), except CTall that involves both direct
and indirect behavior changes. The details of the features are
described as follows.

1) # Changed Traces (CTall): This feature counts the num-
ber of lines that are exercised by test suites, quantifying
the changes in the product’s behavior (i.e., started or
stopped being executed) after a change. It can be thereby
formulated as “DCstart ∪ DCstop”. In Figure 1, all the
lines where either column “stopped being exercised” or
“started being exercised” is true are marked as CTall.

2) # Changed Traces on Modified lines (CTm): This feature
is calculated from the lines of source code that started
or stopped being exercised by test suites after a commit
and that the commit modified/added/deleted. This feature
will be correlated with the changes in source code be-
cause a larger size of the production or test code will
have more trace logs. This feature can be formulated as
“SC∩(DCstart∪DCstop)”. In Figure 1, all the modified
lines where either column “stopped being exercised” or
“started being exercised” is true are marked as CTm (e.g.,
line 34 and 35 in A.java).

3) # Changed Traces on Unmodified lines (CTu): In contrast
to CTm, this feature represents the lines of source code
that started or stopped being exercised by test suites after
a commit and that the commit did not modify/add/delete.
This feature might be able to detect unexpected behavior
changes because the feature is independent of the source
code changes. This feature can be formulated as “SC ∩
(DCstart ∪ DCstop)”. In Figure 1, all the unmodified
lines where either column “stopped being exercised” or
“started being exercised” is true are marked as CTu (e.g.,
lines 36-40 in A.java).

Fine-grained dynamic features distinguish the lines where
test methods started (i.e., Emerged traces) or stopped (i.e., Van-
ished traces) being exercised by test suites after a change. With
the dynamic changes DCstart, DCstop, and static changes
(i.e., SC), we define the following four features.

4) # Emerged Traces on Modified lines (ETm): This feature
represents the number of lines that started being exer-
cised by test suites after a commit and that the commit
modified/added/deleted. This feature may detect whether
or not the modified lines are well-tested. This feature
can be formulated as “SC ∩ DCstart”. In Figure 1,
all the modified lines where the column “started being
exercised” is true are marked as ETm(e.g., line 34 in
A.java in Rev. X).

5) # Vanished Traces on Modified lines (V Tm): This feature
represents the number of lines that stopped being exer-
cised by test suites after a commit and that the commit
modified/added/deleted. This feature may find the lines
that unexpectedly and wrongly work. This feature can be
formulated as SC∩DCstop. In Figure 1, all the modified
lines where the column “stopped being exercised” is true
are marked as V Tm (e.g., line 34 in A.java in Rev. X-1).

6) # Emerged Traces on Unmodified lines (ETu): This
feature represents the number of lines that started being
exercised by test suites after a commit and that the
commit did not modify/add/delete. This feature might
capture the lines that unexpectedly started working. This
feature can be formulated as “SC∩DCstart”. In Figure 1,
all the unmodified lines where the column “started being
exercised” is true are marked as ETu (e.g., lines 38-40
in A.java).

7) # Vanished Traces on Unmodified lines (V Tu): This
feature represents the number of lines that stopped being
exercised by test suites after a commit and that the
commit did not modify/add/delete. This feature may find
the lines that unexpectedly become unused code, which
developers fail to notice. This feature can be formulated
as SC ∩ DCstop. In Figure 1, all the unmodified lines
where the column “stopped being exercised” is true are
marked as V Tu (e.g., line 36 and 37 in A.java).

IV. EXPERIMENTAL SETUP

The goal of our study is to investigate the impact of
trace logs on defect prediction. In this section, we motivate
two research questions and explain why we selected Apache
Commons Lang and Math for our study. Then, we describe
the details of the evaluation settings.

A. Research Questions

We formulate two research questions to evaluate the utility
of trace features when predicting defective commits.
RQ1: Do trace features capture distinct and useful features
of fix-inducing commits?

This study introduces the trace features, which monitor the
behavior of products during test exercises. To make use of the
dynamic features in defect prediction, the proposed features

need to capture distinct and useful properties of defective and
clean commits. As the previous study does [5], RQ1 examines
whether the proposed feature (1) is independent of traditional
features and (2) can identify clean/defective commits.
RQ2: Can the use of trace features improve the perfor-
mance of defect prediction models?

To explore the effectiveness of the trace features, RQ2
involves a comparison between TraceJIT and a state-of-
the-art approach, which shares similarities with TraceJIT
in being inspired by fault localization but exploits different
characteristics [5]. Specifically, we build our model using the
base features and the trace features in addition to the state-
of-the-art model with the same base features but now with
bug report features instead of trace features; we also compare
TraceJIT with the prediction model trained only with the
base features. To further demonstrate the usefulness of the
trace features, RQ2 examines how important the trace features
are within the features used in TraceJIT.

B. Subjects

This study evaluates the performance of JIT defect predic-
tion using the datasets from Apache Commons Lang [41] and
Math [42]. Apache Commons Lang and Math projects have
a significant number of commits to be analyzed and have
been employed by many studies [43]–[45]; the state-of-the-
art defect prediction model [5] has been evaluated with these
projects. Note that Google Closure Compiler was also used in
the previous study [5] to evaluate models, but we could not
use it due to the extensive amount of time required by the
experiment. For example, TraceJIT runs test suites while
using a dynamic analysis tool, which requires a vast amount
of time to run all the commits. In fact, TraceJIT runs tests
(including the collection of trace logs) and stored trace logs,
which took 278 seconds and 9 hours per commit for the Lang
project, respectively. For the Math project, 4,453 seconds to
run tests and 51 hours to store traces per commit. The reason
why the data store took too much time was that more than
300 containers ran on our cluster and many of them stored
the data at the same time.

It is worth noting that the data store is required for only our
experiment so that we can debug models and replicate results.
In practical use, it is unnecessary to store the data in databases
because TraceJIT uses trace logs directly. Therefore, com-
pared with the traditional bug prediction models, the additional
cost of the time for using TraceJIT would be required
by testing (i.e., 278 seconds in Lang and 4,453 seconds in
Math). More importantly, many modern software development
projects adopt continuous integration practices and test their
products [46], thus, the actual cost can be considered only the
use of the dynamic trace tool.

C. Data Collection

This subsection introduces the procedure for preparing
repositories, measuring static features, and dynamic features,
as well as building models.

TABLE I: Dataset Summary

Project # commits # clean # defective Lines of trace Studied Median Median passed Median failed
commits commits logs (Millions) period test methods test methods test methods

Lang 1,836 1,782 54 2,182 2007/05 - 2022/06 3,011 2,955 2
Math 3,537 3,337 200 16,148 2008/05 - 2022/06 2,246 2,243 1

TABLE II: 23 Features used in TraceJIT

Feature Description

Si
ze Lines Added # Added lines in a commit

Lines Deleted # Deleted lines in a commit

D
iff

us
io

n

Subsystem # Modified subsystems in a commit

Directory # Modified directory in a commit

File # Modified files in a commit

Entropy The spread of modified lines across files in a commit

H
is

to
ry

Changes # Changes made to the modified files in the past

Developers # Developers who have changed the modified files
in a commit in the past

Age The time interval to the last changes on the modified
files

E
xp

er
ie

nc
e

Prior changes # Prior changes to the modified files the authors
participated

Recent changes # Prior changes to the modified files that the authors
participated in weighted by the time interval between
changes

Subsystem changes # Prior changes to the modified directories the au-
thors participated

Awareness The fraction of prior changes to the modified direc-
tories that the authors participated

B
ug

re
po

rt

sim2rsum The sum of similarities between code changes in a
commit and recent bug reports

sim2rmax The maximum of similarities between code changes
in a commit and recent bug reports

sim2rmean The arithmetic mean of similarities between code
changes in a commit and recent bug reports

Tr
ac

e (C
ou

rs
e-

gr
ai

ne
d) CTall # Changed trace logs (i.e., CTm+ CTu)

CTm # Changed Traces on Modified lines
(i.e., ETm+ V Tm)

CTu # Changed Traces on Unmodified lines
(i.e., ETu+ V Tu)

(F
in

e-
gr

ai
ne

d) ETm # Emerged Traces on Modified lines

V Tm # Vanished Traces on Modified lines

ETu # Emerged Traces on Unmodified lines

V Tu # Vanished Traces on Unmodified lines

Step 1. Repository Preparation: We clone the repositories
of Apache Commons Math and Lang on GitHub, check out
each revision on the master/main branch, and extract features
from each commit. When measuring features, merging com-
mits are excluded to prevent generating duplicated results (i.e.,
the commits that have more than one parent commit). Also,
trace features measure the difference in trace logs between
a target revision and the parent revision. Thus, we use only
the target and parent revision that can be tested. In addition,
we exclude revisions without additional lines from the dataset
because revisions without additional lines are not detected as

defects in the SZZ approach described in Section IV. We
excluded 3,746 revisions in Lang and 2,940 revisions in Math.
Table I shows the statistics of our datasets after filtering.

Step 2. Static feature Extraction: This study collects both
base and state-of-the-art static features. We have prepared the
13 base features and classified them into four groups: Size,
Diffusion, History, and Experience in Table II. These features
have been widely employed by previous studies [4], [19], [47].

Three state-of-the-art features from a previous study [5] are
measured by calculating the similarity between bug reports
and code. These features are made under the assumption that
if a commit modifies suspicious parts of the code, the commit
is more likely to introduce defects. They found that F1 score
and balanced accuracy are improved by 4.2% to 92.2% and by
1.2% to 3.7%. These features are measured with a time window
parameter. This parameter represents the time period during
which the bug report is consulted to calculate the features. In
this paper, we use the same candidate values as the prior study
(30, 60, 90, and 120 days) [5] and use the best value in the
experiment. These features are categorized as Bug reports in
Table II and hereafter referred to as report features.

Step 3. Dynamic feature Extraction: We extract features
from trace logs during test exercises, generated by dynamic
analysis. Dynamic analysis tools can analyze the order of
the product code executed by each test method. To collect
trace logs, this study uses the state-of-the-art dynamic analysis
tool, SELogger [48]. This tool can save time and computer
resources by omitting the records of redundant paths such
as loops while dynamic analysis is notorious for being time-
consuming and for excessive consumption of memory and disk
usage. Also, we use the framework employed in a previous
study [49] to run SElogger and test suites parallelly. This
tool allows us to deploy numerous containers on our hyper
computing clusters and Kubernetes [50] clusters.

When exercising test methods, in the same manner as
a previous study [49], we first identify test methods by
finding “@Test” and run each test method using a Maven
option (i.e., “-Dtest”) in order to prevent occurring an
OutOfMemoryError. We do not run test methods that are
added or modified in a commit in order to eliminate the
impact on trace logs. Also, when test methods fail in either of
the revisions (before or after a change), we exclude the test
methods. The reasons are that (1) we would like to evaluate
methods with defects that cannot be identified by tests, and (2)
using test failures (i.e., obvious defects) in only TraceJIT
is not a fair comparison with other methods. In addition, we
excluded tests that are likely to have randomness to reduce
the chance of generating unstable performance of defect

prediction. Specifically, tests with the string “Random” in the
test name are excluded (e.g., RandomStringUtilsTest.java).

After collecting the trace logs from both revisions (before
and after a change), we use them to identify the lines of
source code that started or stopped being exercised after the
change. Finally, we measure the dynamic features, by using
the dynamic information (i.e., lines that started/stopped being
exercised) and the static information of the source code (i.e.,
lines that are added/deleted by the changes).

Step 4. Label Creation: We need to label each commit,
as defective or clean, in order to build prediction models. To
identify defective commits, this study uses the SZZ approach
[51]. The SZZ approach can identify the commits that induced
defects (i.e., fix-inducing commits) by using git-blame on
defect-fixing commits. In other words, the approach finds the
commits that modified the same lines as those modified by
defect-fixing commits. We employ an open-source implemen-
tation of the SZZ approach [52]. 1

D. Data Analysis (RQ1)

We first performed a Spearman correlation analysis on the
trace features and the other features to see the degree to which
the trace features are distinct. Spearman correlation analysis al-
lows us to evaluate the correlation between two rank variables.
A correlation coefficient value below 0.35 indicates a weak
correlation, between 0.36 and 0.67 a moderate correlation,
and above 0.68 a strong correlation [54]. A lower correlation
suggests more distinctness of the trace feature from the others.

Next, we performed a Mann-Whitney U-test on the trace
features to verify whether they can identify defective commits
and clean commits (α = 0.05). Specifically, we test the
following hypothesis:
H0: There is no difference in the magnitude of dynamic

features between the two groups of defective commits and
clean commits.

Ha: Defective commits have a higher/lower magnitude of
dynamic features than clean commits.

E. Model Evaluation (RQ2)

Models. RQ2 aims to clarify the impact of using dynamic
features on defect prediction performance. We build and
compare three models, all of which use base features [4], but
two of them use one of the following additional features: report
features [5] and trace features. In this paper, these models
are denoted by BaseModel, FLModel (Fault Localization
Model), and TraceJIT , respectively.

We employ Random Forest (RF) as the prediction algorithm,
which has shown satisfactory performance in previous defect
prediction studies [5], [33], [55]–[58]. The number of trees is
set to 200, which is the default value of scikit-learn.

Training. This study follows the model training and model
evaluation process used in the previous study [5]. Specifically,
when creating datasets, we chronologically sort the data and
equally divide it into five folds (i.e., Fi) so that models built

1We used a forked repository [53] due to fatal bugs in the original one.

with past data predict future data. We train a model with
the first fold (Fi) and predict a label of each commit in the
second fold (Fi+1). After that, these data (i.e., Fi and Fi+1)
are merged as training data and used to predict the labels for
the subsequent fold. We iterate this until the last fold is used
(i.e., four testing datasets from Fi+1 to Fi+4 are used for the
testing). This cycle, which is considered as one evaluation, is
repeated 30 times, and the mean is used in order to eliminate
the randomness of RF.

Note that several features (e.g., Lines Added and ETm)
are expected to be correlated, so there is a possibility of
multicollinearity in the model. In spite of this, this study uses
all the features because the Random Forest algorithm is one
of the models that is less susceptible to multicollinearity than
other machine learning models [59].

Performance measures. We employ Precision, ROC-AUC,
and PR-AUC as performance measures in the same manner as
the previous study [5]. Precision represents the accuracy of
the positive predictions made by the model. It is the ratio of
true positives to the sum of true positives and false positives.
ROC-AUC is simply obtained from the area under the ROC
curve. The ROC curve is plotted with the false-positive rate
as the x-axis and the true positive rate as the y-axis for each
classification threshold in descending order of positive prob-
ability. PR-AUC is calculated like the ROC-AUC but utilizes
the Precision-Recall curve instead of the ROC curve. The
Precision-Recall curve is plotted with the recall on the x-axis
and the precision on the y-axis for each classification threshold
in descending order of positive probability. ROC-AUC and PR-
AUC are known to be robust to imbalanced data [60], which
is common in the defect prediction setting (e.g., 54 defective
commits for 1,782 clean commits in Lang). In addition, they
evaluate model performance across the entire range of possible
thresholds for determining fix-inducing commits. Therefore,
they do not require an explicit threshold and so avoid the
threshold problem that the traditional performance measures
(e.g., Precision and Recall) face.

V. RESULTS

This section presents the results of our empirical evaluation
with respect to our research questions.

RQ1: Do trace features capture distinct and useful features
of fix-inducing commits?

Finding 1: Dynamic features that characterized un-
changed lines are independent of static features. Figure 3
shows the Spearman correlation coefficients between the seven
trace features and the other 16 features using heatmaps. Cells
with lighter shades show weaker correlations and those with
darker shades represent stronger correlations.

There are correlations between dynamic features regard-
ing modified lines (i.e., CTm, ETm, and V Tm) and exist-
ing features from source code changes (e.g., Lines Added,
Deleted, Directory). In particular, strong correlations (i.e., 0.35
to 0.5) are observed between these dynamic features and
LinesAdded as well as LinesDeleted. This is not unexpected

(a) Lang (b) Math

Fig. 3: Heat map of Spearman correlation coefficients between the trace features and the other 18 metrics. Note that the
coefficients with more than 0.05 of p-value are replaced with zero.

CTall CTm ETm VTm CTu ETu VTu

10
0

10
1

10
2

10
3

10
4

16.00
31.50

0.00

23.50

0.00

13.50

0.00

10.50 11.00 9.00
4.00 4.00 4.00 4.00

clean
defective

(a) Lang
CTall CTm ETm VTm CTu ETu VTu

10
0

10
1

10
2

10
3

10
4

10
5

253.00 235.50

0.00

2.00

0.00
1.00

0.00 0.00

201.00
117.00

69.00
38.50

70.00
37.50

clean
defective

(b) Math

Fig. 4: Distribution of dynamic features in defective and clean commits in the Lang and Math projects. The numbers in the
figure represent their median.

because CTm, ETm, and V Tm are computed by counting
dynamically and statically changed lines.

On the other hand, the three dynamic features that charac-
terize unmodified lines (i.e., CTu, ETu, and V Tu) are weakly
or not correlated with the existing features. This indicates that
the signal from these dynamic features is independent from the
signal provided by static features. We suspect that this signal
will be useful for predicting fix-inducing commits that could
not be found using static features.

Finding 2: The values of dynamic features are sta-
tistically significantly different when clean commits are
compared to defective ones. Figure 4 shows the distribution
of trace features in clean commits and defective commits.
As for CTall, when comparing the median of each feature,
we see different results in Lang and Math. While defective
commits have a larger median than clean commits in Lang,
they have similar medians in Math. However, after applying
the statistical test, no statistically significant difference is
observed in either project.

Regarding the trace features on modified lines (i.e., CTm,
ETm, and V Tm), the medians in defective commits are larger
than those in clean commits (except V Tm in Math). After
testing four features, the null hypotheses regarding CTm and
ETm features are rejected, suggesting that behavior changes
on modified lines are more likely to be defective. This might
be because these features correlate with static change features
(i.e., lines added and deleted) that have a strong relationship
with fix-inducing commits [4], [7].

As for trace features on unmodified lines (i.e., CTu, ETu,
and V Tu), in Lang, the median of CTu is larger in the clean
commits but no studied project shows a statistically significant
difference between these two types of commits. In Math,
we observed that clean commits have larger medians than
defective ones in terms of CTu, ETu, and V Tu. Moreover,
hypothesis tests confirm that these differences are statistically
significant; however, counter to our expectations, these results
suggest that smaller behavior changes are likely defective. The
reason for this counter-intuitive result is not yet clear.

RQ1: Dynamic features on unchanged lines (i.e., CTu,
ETu, and V Tu) are independent of the existing features but
only statistically significant differences between clean and
defective commits are observed in the context of the Math
project.

RQ2: Can the use of trace features improve the performance
of defect prediction models?

Table III shows the performance of three defect prediction
models. The values in bold indicate the highest performance
among the three models.

Finding 3: TraceJIT shows better performance than
the FL model in 4 of the 6 cases. Compared with the Base
model, the FL and TraceJIT show better performance for
both Lang and Math across all the performance measures.
Specifically, FL and TraceJIT have improved 32.5% and
44.8% of Precision for Lang, as well as 16.1% and 14.1% of

TABLE III: The performance of defect prediction models
using different features. The percentages in the brackets show
the improvements in comparison to the Base Model.

Proj
Model Base Model FL Model TraceJIT

(Metrics) (Base) (Base+Report) (Base+Trace)

Lang

ROC-AUC 0.674 0.705 (4.6%) 0.714 (5.9%)

Precision 0.286 0.379 (32.5%) 0.414 (44.8%)

PR-AUC 0.133 0.134 (0.8%) 0.134 (0.8%)

Math

ROC-AUC 0.762 0.773 (1.4%) 0.772 (1.3%)

Precision 0.213 0.220 (3.3%) 0.272 (27.7%)

PR-AUC 0.149 0.173 (16.1%) 0.170 (14.1%)

PR-AUC for Math.
When comparing the FL model and TraceJIT, for Lang,

TraceJIT outperforms the FL model in terms of ROC-AUC
(1.3% improvement) and Precision (9.2% improvement). For
Math, TraceJIT substantially outperforms the FL model in
terms of Precision (23.6% improvement). In terms of ROC-
AUC and PR-AUC, the FL model technically outperforms
TraceJIT; however, the improvements are less than one
percentage point (0.001 to 0.003). In particular, in Lang, we
found three commits that are falsely labeled as defect commits
by the FL model, but are correctly labeled by TraceJIT.
Interestingly, all the trace features have a value of 0 to 3 in
each of the commits. TraceJIT thus identified these commits
as non-fix-inducing commits, leading to higher precision.

Finding 4: Trace features on modified lines and un-
modified lines are used as important features in Lang
and Math, respectively. Table IV shows the importance of
the variables used in the Random Forrest of TraceJIT.
The most important three features in Lang are “Line added”,
“Line deleted”, and “Unique changes”, in particular, “Line
added” is also considered one of the important features in
previous studies [19], [22]; CTall, CTm, V Tm, and ETm are
ranked fourth, sixth, seventh, and eighth, respectively. The
trace features regarding unmodified lines are ranked at lower
positions (V Tu: 17th, CTu: 18th, ETu: 19th).

In contrast to the lower rank of the trace features regarding
unmodified lines, in Math, CTu, ETu, and V Tu rank first,
second, and fifth, respectively. CTall ranks in a higher position
(fourth) in Math as well as Lang.

Overall, while there are different trends in Lang and Math,
the dynamic features are considered important features.

RQ2: TraceJIT shows better or equal performance to
the FL model in most cases, especially 9.2% and 23.6%
improvement of Precision in comparison to the state-of-the-
art model (i.e., FL model) in Lang and Math, respectively. In
addition, the trace features regarding modified and unmod-
ified lines are selected as important features in Lang and
Math, respectively.

TABLE IV: Feature Importance

Lang Math

Rank Feature Importance Feature Importance

1 Lines Added 0.111 CTu 0.082

2 Lines Deleted 0.106 ETu 0.073

3 Changes 0.061 Changes 0.072

4 CTall 0.060 CTall 0.062

5 Age 0.056 V Tu 0.061

6 CTm 0.054 Recent Chgs. 0.055

7 V Tm 0.053 Priror Chgs. 0.054

8 ETm 0.051 Entropy 0.051

9 Awareness 0.046 Lines Added 0.048

10 File 0.046 Awareness 0.045

11 Prior Chgs. 0.044 Age 0.045

12 Recent Chgs. 0.043 Developers 0.044

13 Subsys Chgs. 0.042 Subsys Chgs. 0.043

14 Directory 0.039 Lise deleted 0.041

15 Subsystem 0.038 File 0.041

16 Developers 0.037 Directory 0.040

17 V Tu 0.033 Subsystem 0.039

18 CTu 0.032 CTm 0.037

19 ETu 0.026 ETm 0.036

20 Entropy 0.024 V Tm 0.032

VI. CAN TRACEJIT DETECT REGRESSIONS?

Regression defects are the defects that previously worked
but are now broken due to unexpected behavior changes.
One of the main strengths of trace features is their ability to
detect unexpected behavior resulting from changes, which may
include defects, by focusing on behavior changes instead of
code changes. Hence, TraceJIT is inherently more adept at
identifying such regression defects caused by unexpected be-
havioral changes. This study has assessed the performance of
TraceJIT without differentiating defect types. This section
further delves into the potential of TraceJIT in predicting
regression defects. For this, we identify the commits contain-
ing only changes to the existing functions (i.e., methods) to
exclude commits introducing new features such as new APIs.
Specifically, we separate commits depending on whether or not
the commits contain only modifications to existing methods.
These commits are referred to as method modification commits
(MMCs), and the others are as non-MMCs.

To identify MMCs, we employ an Abstract Structure Tree
to obtain a list of methods in each commit contained in the
testing dataset. We compare the lists before and after a change,
and then we find the methods that exist only after the change.
By doing so, we separate the testing datasets into two testing
datasets including 1,060 MMCs and 408 non-MMCs in Lang,
as well as 1,620 MMCs and 1,209 non-MMCs in Math. After
labeling each commit in the testing datasets with MMC or non-

TABLE V: The effectiveness of trace features

Test data MMCs non-MMCs

Base Model FL Model TraceJIT Base Model FL Model TraceJIT

Lang

ROC-AUC 0.665 0.663 (–0.3%) 0.723 (8.7%) 0.610 0.625 (2.5.%) 0.647 (6.1%)

Precision 0.129 0.157 (21.7%) 0.414 (220.9%) 0.667 0.833 (24.9%) 0.000 (–)

PR-AUC 0.151 0.151 (0.0%) 0.169 (11.9%) 0.155 0.156 (0.6%) 0.135 (–12.9%)

Math

ROC-AUC 0.686 0.729 (6.3%) 0.729 (6.3%) 0.666 0.679 (2.0%) 0.679 (2.0%)

Precision 0.191 0.312 (63.4%) 0.381 (99.5%) 0.225 0.208 (–7.6%) 0.263 (16.9%)

PR-AUC 0.071 0.079 (11.3%) 0.074 (4.2%) 0.179 0.206 (15.1%) 0.199 (11.2%)

MMC, we recalculate the results for MMCs and non-MMCs,
using the performance measures used in RQ2.

Finding 5: TraceJIT shows the best performance
for the MMC dataset in most cases while not showing
such good performance for the non-MMC dataset. Ta-
ble V shows the performance for the MMCs and non-MMCs
datasets. Comparing the performance of predicting defective
MMCs between the three models, we observe that TraceJIT
outperforms other models across most of the performance
measures in both projects. The FL model performs slightly
worse than the Base Model in terms of ROC-AUC in Lang.

On the other hand, for non-MMC, TraceJIT shows the
best performance in terms of ROC-AUC in Lang and Math as
well as Precision in Math. However, the FL model shows better
performance than TraceJIT in some measures (i.e., ROC-
AUC in Math, Precision in Lang, PR-AUC in both projects).

Overall, TraceJIT performs better for predicting defects
in the MMC dataset, implying that TraceJIT is likely to be
more suited to predict regression defects. Our future work is
planning to build and evaluate TraceJIT using the dataset
containing only MMC or regression defect datasets [61].

TraceJIT performed better for predicting defects con-
tained in changes to the existing methods, suggesting that
it may be suited for detecting regressions.

VII. THREATS TO VALIDITY

Internal Validity. Internal validity threats concern factors
internal to our study that could influence our results. The num-
ber of defective commits in this study is relatively small, which
are 54 and 200 in the Lang and Math projects, respectively.
The performance difference made by the models might be
impacted by a few correct predictions. To mitigate this impact,
we iterated evaluations 30 times and applied statistical tests.
Construct Threats. Construct validity threats concern the re-
lationship between theory and observation. Many studies [62]–
[64] reported that there are a certain number of flaky tests,
which may produce unstable results. This would impact the
performance of defect prediction because the lines exercised
by test methods vary. Thus, future studies need to eliminate
the tests that are likely to be flaky tests.
External Threats. External validity threats concern the gener-

alizability of our findings. We evaluated TraceJIT with only
two projects that are selected from the previous study [5]. The
number of projects is comparable with that of similar previous
studies [22], [31] but still needs to be increased to generalize
our findings. In particular, the studied projects have numerous
test methods, which might lead to clear results. Future work
should study the impact of the test suite size and examine the
effectiveness of automated tests (e.g., EvoSuite [12]).

VIII. CONCLUSIONS

This paper is the first to explore the impact of behavioral
code change on JIT prediction. Specifically, we proposed
seven dynamic features that capture the difference in product
behavior before and after applying a change. These features
are computed using trace logs collected during invocations of
test suites. Using these logs, we identified which lines of code
started/stopped being exercised after a change. We evaluated
these features by conducting an empirical study of two large
and thriving open-source projects. We observed that, compared
to baseline models that use traditional features, adding our
proposed set of behavior features improves up to 5.9% of
ROC-AUC, 44.8% of precision, and 14.1% of PR-AUC.

This paper not only demonstrated the importance of behav-
ioral features for JIT defect prediction, but also laid the foun-
dation for future work on behavioral features in other software
engineering contexts, such as build outcome prediction and
code reviewer recommendation. For practitioners, TraceJIT,
especially the one trained with the MMC dataset, would be
useful when detecting regressions. However, we proposed only
simple features obtained from trace logs, so an exciting future
research direction is to develop more effective trace features.

Replication package: Our replication package is available
on GitHub [65].

ACKNOWLEDGEMENT

We gratefully acknowledge the financial support of: (1)
JSPS for the KAKENHI grants (JP21H04877, 21K17725,
JP22K17874, JP22K18630), and Bilateral Program grant
JPJSBP120239929; (2) JST for PRESTO grant JPMJPR22P3;
(3) the Inamori Research Institute for Science for supporting
Yasutaka Kamei via the InaRIS Fellowship; and (4) NSERC
for Alliance International grant ALLRP 580835-22.

REFERENCES

[1] N. E. Fenton and M. Neil, “A critique of software defect prediction
models,” IEEE Transactions on Software Engineering (TSE), vol. 25,
no. 5, pp. 675–689, 1999.

[2] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features
for defect prediction,” in Proceedings of the International Conference
on Software Engineering (ICSE), 2016, pp. 297–308.

[3] T. Zimmermann, N. Nagappan, H. C. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: a large scale experiment on data vs.
domain vs. process,” in Proceedings of the joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/FSE), 2009,
pp. 91–100.

[4] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE Transactions on Software Engineering (TSE), vol. 39,
no. 6, pp. 757–773, 2013.

[5] J. Sohn, Y. Kamei, S. McIntosh, and S. Yoo, “Leveraging fault local-
isation to enhance defect prediction,” in Proceedings of IEEE Interna-
tional Conference on Software Analysis, Evolution, and Reengineering,
(SANER), 2021, pp. 284–294.

[6] Z. Zeng, Y. Zhang, H. Zhang, and L. Zhang, “Deep just-in-time defect
prediction: how far are we?” in Proceedings of the ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA),
2021, pp. 427–438.

[7] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of
the efficiency of change metrics and static code attributes for defect
prediction,” in Proceedings of the International Conference on Software
Engineering (ICSE), 2008, pp. 181–190.

[8] R. Karampatsis and C. Sutton, “How often do single-statement bugs
occur?: The manysstubs4j dataset,” in Proceedings of the IEEE/ACM
International Conference on Mining Software Repositories (MSR), 2020,
pp. 573–577.

[9] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in Proceedings of the International
Conference on Software Engineering (ICSE), 2005, pp. 402–411.

[10] A. V. Kamienski, L. Palechor, C. Bezemer, and A. Hindle, “Pysstubs:
Characterizing single-statement bugs in popular open-source python
projects,” in Proceedings of the IEEE/ACM International Conference
on Mining Software Repositories (MSR), 2021, pp. 520–524.

[11] B. Mosolygó, N. Vándor, G. Antal, and P. Hegedüs, “On the rise
and fall of simple stupid bugs: a life-cycle analysis of sstubs,” in
Proceedings of the IEEE/ACM International Conference on Mining
Software Repositories (MSR), 2021, pp. 495–499.

[12] G. Fraser and A. Arcuri, “EvoSuite: automatic test suite generation for
object-oriented software,” in Proceedings of the joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Software Engineering (ES-
EC/FSE), 2011, pp. 416–419.

[13] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri,
“Do automatically generated unit tests find real faults? an empirical
study of effectiveness and challenges (T),” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing (ASE), 2015, pp. 201–211.

[14] B. Chen, L. Chen, C. Zhang, and X. Peng, “BUILDFAST: history-
aware build outcome prediction for fast feedback and reduced cost in
continuous integration,” in Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2020, pp. 42–53.

[15] M. Chouchen, A. Ouni, M. W. Mkaouer, R. G. Kula, and K. Inoue,
“WhoReview: A multi-objective search-based approach for code review-
ers recommendation in modern code review,” Applied Soft Computing
(ASOC), vol. 100, p. 106908, 2021.

[16] A. E. Hassan, “Predicting faults using the complexity of code changes,”
in Proceedings of the International Conference on Software Engineering
(ICSE), 2009, pp. 78–88.

[17] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Transactions on
Software Engineering (TSE), vol. 22, no. 10, pp. 751–761, 1996.

[18] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering (TSE), vol. 20,
no. 6, pp. 476–493, 1994.

[19] M. Kondo, D. M. German, O. Mizuno, and E.-H. Choi, “The impact of
context metrics on just-in-time defect prediction,” Empirical Software
Engineering (EMSE), vol. 25, no. 1, pp. 890–939, 2020.

[20] A. Hindle, M. W. Godfrey, and R. C. Holt, “Reading beside the lines:
Indentation as a proxy for complexity metric,” in Proceedings of the
International Conference on Program Comprehension (ICPC), 2008, pp.
133–142.

[21] F. Rahman and P. T. Devanbu, “How, and why, process metrics are
better,” in Proceedings of the International Conference on Software
Engineering (ICSE), 2013, pp. 432–441.

[22] S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving target?
A longitudinal case study of just-in-time defect prediction,” IEEE
Transactions on Software Engineering (TSE), vol. 44, no. 5, pp. 412–
428, 2018.

[23] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” in Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering (ASE), 2013, pp. 279–289.

[24] S. Kim, E. J. Whitehead Jr, and Y. Zhang, “Classifying software changes:
Clean or buggy?” IEEE Transactions on Software Engineering (TSE),
vol. 34, no. 2, pp. 181–196, 2008.

[25] O. Mizuno and T. Kikuno, “Training on errors experiment to detect
fault-prone software modules by spam filter,” in Proceedings of the
joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC/FSE), 2007, pp. 405–414.

[26] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. De-
vanbu, “On the “naturalness” of buggy code,” in Proceedings of the
International Conference on Software Engineering (ICSE), 2016, pp.
428–439.

[27] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction via
convolutional neural network,” in Proceedings of the Software Quality,
Reliability and Security (QRS), 2017, pp. 318–328.

[28] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning for
just-in-time defect prediction,” in Proceedings of the Software Quality,
Reliability and Security (QRS), 2015, pp. 17–26.

[29] Y. Li, S. Wang, T. N. Nguyen, and S. Van Nguyen, “Improving bug
detection via context-based code representation learning and attention-
based neural networks,” Proceedings of the ACM on Programming
Languages (PACMPL), vol. 3, no. OOPSLA, pp. 162:1–162:30, 2019.

[30] C. Pornprasit and C. Tantithamthavorn, “Deeplinedp: Towards a deep
learning approach for line-level defect prediction,” IEEE Transactions
on Software Engineering (TSE), vol. 49, no. 1, pp. 84–98, 2023.

[31] T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi, “Deepjit: an
end-to-end deep learning framework for just-in-time defect prediction,”
in Proceedings of the IEEE/ACM International Conference on Mining
Software Repositories (MSR), 2019, pp. 34–45.

[32] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, “An
empirical investigation of the relationship between spectra differences
and regression faults,” Software Testing, Verification and Reliability
(STVR), vol. 10, no. 3, pp. 171–194, 2000.

[33] D. Bowes, T. Hall, M. Harman, Y. Jia, F. Sarro, and F. Wu, “Mutation-
aware fault prediction,” in Proceedings of the ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA), 2016, pp.
330–341.

[34] K. Herzig, “Using pre-release test failures to build early post-release
defect prediction models,” in Proceedings of the IEEE International
Symposium on Software Reliability Engineering (ISSRE), 2014, pp. 300–
311.

[35] F. Elberzhager, S. Kremer, J. Münch, and D. Assmann, “Guiding testing
activities by predicting defect-prone parts using product and inspection
metrics,” in Proceedings of the Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), 2012, pp. 406–413.

[36] A. Amar and P. C. Rigby, “Mining historical test logs to predict bugs
and localize faults in the test logs,” in Proceedings of the International
Conference on Software Engineering (ICSE), 2019, pp. 140–151.

[37] Y. Ding, B. Steenhoek, K. Pei, G. Kaiser, W. Le, and B. Ray, “Traced:
Execution-aware pre-training for source code,” in Proceedings of the
International Conference on Software Engineering (ICSE), 2024, pp.
405–416.

[38] V. Garousi, M. Felderer, M. Kuhrmann, K. Herkiloglu, and S. Eldh,
“Exploring the industry’s challenges in software testing: An empirical
study,” Journal of Software: Evolution and Process, vol. 32, no. 8, 2020.

[39] A. Orso, T. Apiwattanapong, J. Law, G. Rothermel, and M. J. Harrold,
“An empirical comparison of dynamic impact analysis algorithms,” in
Proceedings of the International Conference on Software Engineering
(ICSE), 2004, pp. 491–500.

[40] T. Apiwattanapong, A. Orso, and M. J. Harrold, “Efficient and precise
dynamic impact analysis using execute-after sequences,” in Proceedings
of the International Conference on Software Engineering (ICSE), 2005,
pp. 432–441.

[41] Apache, “Commons Lang,” https://github.com/apache/commons-lang.
[42] ——, “Commons Math,” https://github.com/apache/commons-math.
[43] F. Palma, T. Abdou, A. Bener, J. Maidens, and S. Liu, “An improvement

to test case failure prediction in the context of test case prioritization,” in
Proceedings of the International Conference on Predictive Models and
Data Analytics in Software Engineering (PROMISE), 2018, pp. 80–89.

[44] K. E. Someoliayi, S. Jalali, M. Mahdieh, and S. Mirian-Hosseinabadi,
“Program state coverage: A test coverage metric based on executed
program states,” in Proceedings of IEEE International Conference on
Software Analysis, Evolution, and Reengineering, (SANER), 2019, pp.
584–588.

[45] A. Perera, A. Aleti, M. Böhme, and B. Turhan, “Defect prediction guided
search-based software testing,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering (ASE),
2020, pp. 448–460.

[46] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,” in
Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2016, pp. 426–437.

[47] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “An empirical
study of the impact of modern code review practices on software
quality,” Empirical Software Engineering (EMSE), vol. 21, no. 5, pp.
2146–2189, 2016.

[48] K. Shimari, T. Ishio, T. Kanda, and K. Inoue, “Near-omniscient debug-
ging for java using size-limited execution trace,” in Proceeding of the
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2019, pp. 398–401.

[49] Y. Kashiwa, K. Shimizu, B. Lin, G. Bavota, M. Lanza, Y. Kamei,
and N. Ubayashi, “Does refactoring break tests and to what extent?”
in Proceedings of the IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2021, pp. 171–182.

[50] Kubernetes. https://kubernetes.io/.
[51] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes induce

fixes?” in Proceedings of the IEEE/ACM International Conference on
Mining Software Repositories (MSR), 2005.

[52] V. Lenarduzzi, F. Palomba, D. Taibi, and D. A. Tamburri, “Openszz:
A free, open-source, web-accessible implementation of the SZZ al-
gorithm,” in Proceedings of the International Conference on Program
Comprehension (ICPC), 2020, pp. 446–450.

[53] VladyslavBondarenko, “OpenSZZ,” https://github.com/
VladyslavBondarenko/OpenSZZ.

[54] J. S. Collofello and S. N. Woodfield, “Evaluating the effectiveness of
reliability-assurance techniques,” The Journal of Systems and Software
(JSS), vol. 9, no. 3, pp. 191–195, 1989.

[55] J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan, “Heterogeneous defect
prediction,” IEEE Transactions on Software Engineering (TSE), vol. 44,
no. 9, pp. 874–896, 2018.

[56] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking clas-
sification models for software defect prediction: A proposed framework
and novel findings,” IEEE Transactions on Software Engineering (TSE),
vol. 34, no. 4, pp. 485–496, 2008.

[57] T. Mende and R. Koschke, “Effort-aware defect prediction models,” in
Proceedings of the European Conference on Software Maintenance and
Reengineering (CSMR), 2010, pp. 107–116.

[58] S. Tabassum, L. L. Minku, D. Feng, G. G. Cabral, and L. Song, “An
investigation of cross-project learning in online just-in-time software
defect prediction,” in Proceedings of the International Conference on
Software Engineering (ICSE), 2020, pp. 554–565.

[59] X. Zhao, B. Yu, Y. Liu, Z. Chen, Q. Li, C. Wang, and J. Wu, “Estimation
of poverty using random forest regression with multi-source data: A case
study in bangladesh,” Remote Sensing, vol. 11, no. 4, p. 375, 2019.

[60] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on Knowledge and Data Engineering (TKDE), vol. 21,
no. 9, pp. 1263–1284, 2009.

[61] M. Ohira, Y. Kashiwa, Y. Yamatani, H. Yoshiyuki, Y. Maeda, N. Limset-
tho, K. Fujino, H. Hata, A. Ihara, and K. Matsumoto, “A dataset of high
impact bugs: Manually-classified issue reports,” in Proceedings of the
IEEE/ACM International Conference on Mining Software Repositories
(MSR), 2015, pp. 518–521.

[62] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in Proceedings of the ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE), 2014, pp.
643–653.

[63] W. Lam, K. Muslu, H. Sajnani, and S. Thummalapenta, “A study on the
lifecycle of flaky tests,” in Proceedings of the International Conference
on Software Engineering (ICSE), 2020, pp. 1471–1482.

[64] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn, “A survey of
flaky tests,” ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM), vol. 31, no. 1, pp. 17:1–17:74, 2022.

[65] I. Morita, Y. Kashiwa, M. Kondo, J. Sohn, S. McIntosh, Y. Kamei,
and N. Ubayashi, “Replication package for TraceJIT: Evaluating the
Impact of Behavioral Code Change on Just-In-Time Defect Prediction,”
https://github.com/posl/TraceJIT.

https://github.com/apache/commons-lang
https://github.com/apache/commons-math
https://github.com/VladyslavBondarenko/OpenSZZ
https://github.com/VladyslavBondarenko/OpenSZZ
https://github.com/posl/TraceJIT

	Introduction
	Preliminaries
	Related Work
	Motivating Example

	TraceJIT
	Concept
	Features

	Experimental Setup
	Research Questions
	Subjects
	Data Collection
	Data Analysis (RQ1)
	Model Evaluation (RQ2)

	Results
	Can TraceJIT Detect Regressions?
	Threats to Validity
	Conclusions
	References

